

MNBC 2020, Part 3

SAW HTWE ZAW

MYANMAR EARTHQUAKE COMMITTEE

BUILDING ENGINEERING INSTITUTE

FEDERATION OF MYANMAR ENGINEERING SOCIETIES

9 December 2023

Yangon, Myanmar

•MNBC Structural Design follows IBC-2006 and ASCE7-05 codes.

- •MNBC started in 2010 and referred International Codes of 2005-06.
- •MNBC tried to combine two codes (IBC and ASCE7) in order to compile them into one volume.
- •The construction environment in Myanmar has been changed significantly since 2010.
 - PE system enacted together with Engineering Council Law.
 - Construction quality awareness has raised.

MYANMAR NATIONAL BUILDING CODE - 2012 PART 3 STRUCTURAL DESIGN

3.1 GENERAL

- 3.1.1 Definitions and Notation
- 3.1.2 Design and Construction Documents
- 3.1.3 General Design Requirements

3.2 LOAD COMBINATIONS AND LOADS

- 3.2.1 Load Combinations
- 3.2.2 Dead Loads, Soil Loads and Hydrostatic Pressure
- 3.2.3 Live Loads
- 3..2.4 Rain Loads

3.3 WIND DESIGN CRITERIA

- 3.3.1 General
- 3.3.2 Definitions
- 3.3.3 Symbols and Notation
- 3.3.4 Method 1 Simplified Procedure
- 3.3.5 Method 2 Analytical Procedure
- 3.3.6 Method 3 Wind Tunnel Procedure

3.4 SEISMIC DESIGN CRITERIA AND DESIGN REQUIREMENTS FOR BUILDINGS

- 3.4.1 Seismic Design Criteria
- 3.4.2 Seismic Design Requirements for Building Structures
- 3.4.3 Seismic Response History Procedures
- 3.4.4 Site-specific Ground Motion Procedures for Seismic Design

MNBC basic concepts

Design

Supply = Demand

Capacity = Demand

Reaction = Action

Strength = Load

Something just right. Particular solution.

Federation of Myanmar Engineering Society

Design

For

General Solution,

Supply > Demand

Capacity > Demand

Reaction > Action

Strength > Load

Something is always more than required.

Federation of Myanmar Engineering Society

Design

Rewriting them as,

Supply = FOS x Demand Capacity = FOS x Demand Reaction = FOS x Action Strength = FOS x Load

How much FOS (Factor of Safety) is needed?

Factor of Safety

- LRFD:
- Capacity / Reduction = Demand x Load Factor

s of numan lives which is not acceptable.

ngs in Big Event Operational (0) Immediate Occupancy (IO) Life Safety (LS) Collapse Prevention (CP)

Normal BuildingsLife Safety in Big Event

Disaster Events

•

(rare event, MCE, BSE-2N, 2% in 50 years)

- Minor Damage in Small Event (frequent event, DBE, BSE-1N, 10%in 50 years)
- Important Buildings
 - Operational in Big Event (rare event, MCE, 2% in 50 years)
 - No Damage in Small Event (frequent event, DBE, 10%in 50 years)

HAZARD RISK ASSESSMENT MATRIX

	Hazard Categories									
	1 2 3 4									
Frequency of Occurrence	Catastrophic	Critical	Serious	Minor						
(A) Frequent	1A	2A	3A	4A						
(B) Probable	1B	2B	3B	4B						
(C) Occasional	1C	2C	3C	4C						
(D) Remote	1D	2D	3D	4D						
(E) Improbable	1E	2E	3E	4E						

High

For new buildings,

Design Performance

For existing buildings,

- Life Safety in the 10%/50y Event
- Near Collapse in the 10%/100y Event (a.k.a. 5%/50y Event)

MYANMAR NEERING SO

Federation of Myanmar Engineering

Society

Risk = Hazard x Exposure x Vulnerability

Risk = *Hazard* * *Exposure* * *Vulnerability*

Risk = *Hazard* * *Vulnerability*

$$Vulnerability = \frac{1}{Strength}$$

$$Risk = \frac{Hazard}{Strength}$$

$$Risk = \frac{Demand}{Capacity} = DemandCapacityRatio$$

$$Safety = \frac{Strength}{Hazard}$$

MNBC 2020, Part 3, Structural Design Scope

Hazard, Load, Safety: - MNBC 2020

- Strength, Capacity, Member Design:
 - Concrete: ACI
 - Steel: AISC
 - Masonry: Not Yet
 - Timber and Bamboo: Not Yet
 - Cold-form, Aluminum: Not Yet

$$Safety = \frac{Capacity}{Load}$$

 $Risk = \frac{Load}{Capacity}$

Risk and Safety

• RISK, SAFETY, LOAD AND CAPACITY

Occupancy Category (will be used as "Risk Category" after ASCE7-10 and later

Buildings shall be designed according to their "Risk" category

Risk Category	Nature of Occupancy					
I	Representing a low hazard to human life in the event of failure					
П	Except those listed in other categories					
III	Represent a substantial hazard to human life in the event of failure					
IV	Designed as essential facilities					

Risk Category defined in recent ASCE7-16

Category	Occupancy	NATURE OF OCCUPANCY
I	Low	Use or Occupancy of Buildings and Structures Risk Category Buildings and other structures that represent a low risk to human life in the event of failure.
П	Medium	All buildings and other structures except those listed in Risk Categories I, III, and IV.
III	High	Buildings and other structures, the failure of which could pose a substantial risk to human life. Buildings and other structures, not included in Risk Category IV, with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure. Buildings and other structures not included in Risk Category IV (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing toxic or explosive substances where their quantity exceeds a threshold quantity established by the Authority Having Jurisdiction and is sufficient to pose a threat to the public if released.
IV	Essential	Buildings and other structures designated as essential facilities. Buildings and other structures, the failure of which could pose a substantial hazard to the community. Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, or hazardous waste) containing sufficient quantities of highly toxic substances where the quantity exceeds a threshold quantity established by the authority having jurisdiction to be dangerous to the public if released and is sufficient to pose a threat to the public if released. Buildings and other structures required to maintain the functionality of other Risk Category IV structures.

Federation of Myanmar Engineering Society

Risk Category (Union)

Building Type (Union)

Cate gory	Risk Category	Apartm ent	Bungalo w	Semi- pucca	Wood	Bamboo	Hut	Other	All Buildings
Ι	Temporary					37.40%	2.80%		40.20%
П	Medium		6.12%	5.85%	41.20%				53.17%
	High	4.05%							4.05%
IV	Ess/Haz	0.45%	0.68%	0.65%				0.80%	2.58%
	Union	4.50%	6.80%	6.50%	41.20%	37.40%	2.80%	0.80%	100.00%

Occupancy Category (will be used as "Risk Category" after ASCE7-10 and later) Buildings shall be designed according to their "Risk" category Looks similar to Engineering Council Rule PE / RSE work scope

104. The registered senior engineer have the right to operate the following engineering works constrained by these rules, by calculation of design, signing the layout and construction without the supervision of the registered professional engineer.

- (a) Civil Engineering Works
 - Normal residential building, not public buildings (such as school, hospital, cinema hall, sport ground, city hall and supermarket and the others) not extensive than flooring area 1000sq m and not higher than 28 meters until floral accents;
 - (ii) Two-lane tar and concrete roads under the capacity load 13 tons;
 - (iii) House posts distance under 20 meters and steel and iron concrete bridges under the capacity load 40 tons;
 - (iv) · Earthen reservoirs under 30 meters high.

Risk Category	Nature of Occupancy					
Ι	Representing a low hazard to human life in the event of failure					
II	Except those listed in other categories					
III	Represent a substantial hazard to human life in the event of failure					
IV	Designed as essential facilities					

Loads

Combining Factored Loads Using Strength Design or Load and Resistance

3.2.1.2.2 Basic load combinations

Structures, components, and foundations shall be designed so that their design strength equals or exceeds the most critical effects of the factored loads in the following combinations:

MYANMAR

Federation of Myanmar Engineering Society

1.4 (D + F)	
Eq. (3.2.1)	
$1.2(D+F+T) + 1.6(L+H) + 0.5(L_r \text{ or } R)$	Eq. (3.2.2)
$1.2D + 1.6(L_r \text{ or } R) + (L \text{ or } 0.8W)$	Eq.
$1.2D + 1.6W + L + 0.5(L_r \text{ or } R)$	Eq.
1.2D + 1.0E + L	
Eq. (3.2.5)	
0.9D + 1.6W + 1.6H	
Eq. (3.2.6)	
0.9D + 1.0E + 1.6H	
Eq. (3.2.7)	
	1.4 (D + F) Eq. (3.2.1) $1.2(D+F+T) + 1.6(L+H) + 0.5 (L_r \text{ or } R)$ $1.2D + 1.6(L_r \text{ or } R) + (L \text{ or } 0.8W)$ $1.2D + 1.6W + L + 0.5(L_r \text{ or } R)$ 1.2D + 1.0E + L Eq. (3.2.5) 0.9D + 1.6W + 1.6H Eq. (3.2.6) 0.9D + 1.0E + 1.6H Eq. (3.2.7)

Combining Nominal Loads Using Allowable Stress Design or Working Stress Design

3.2.1.3.1 Basic load combinations

Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

1.	D + F	
	Eq. (3.2.8)	
2.	D + H + F + L + T	
	Eq. (3.2.9)	
3.	$D + H + F + (L_r \text{ or } R)$	
	Eq. (3.2.10)	
4.	$D + H + F + 0.75(L + T) + 0.75(L_r \text{ or } R)$	
	Eq. (3.2.11)	
5.	D + H + F + (W or 0.7E)	
	Eq. (3.2.12)	
6.	$D + H + F + 0.75(W \text{ or } 0.7E) + 0.75L + 0.75(L_r \text{ or } R)$	Eq. (3.2.13)
7.	0.6D + W + H	
	Eq. (3.2.14)	

Wind Load

Wind Load Characterization

Wind Design Flow Chart- Method 1: Simplified Procedure

ASCE 7-05 Wind Pressures

The basic form of the pressure equation:

- Where
 - p = a wind pressure on a surface
 - q = velocity pressure. This is the pressure due to a moving fluid on a flat plate
 - G = gust factor. The gust factor accounts for dynamic interaction between the flowing air and the structure
 - C = pressure coefficient. The pressure coefficient accounts for varying pressure across a surface.

The Velocity Coefficient

$$p = \frac{1}{2}mV^2 = \frac{1}{2} \left[\frac{0.0765}{32.2}\right] \left[\frac{5280}{3600}\right]^2 V^2 = 0.0256V^2$$

See ASCE 7-05 C6.5.10

- Atmospheric pressure,
- 14.7 pound/square inch,
- 2.12 kip/square feet
- or nearly 1 ton/square feet
- Based on the average density of air at sea level, 0.0765 pound/cubic feet

Velocity Pressure, q

See ASCE 7-05 6.5.10

- q_z =Velocity Pressure = 0.00256 $K_z K_{zt} K_d V^2 I$ (lb/ft²)
 - Constant 0.00256
 - V = Basic wind speed in mph
 - I = Importance Factor (i.e. different MRI)
 - K_z = Exposure Coefficient
 - K_{zt} = Topographical Factor
 - K_d = Wind Directionality Factor
- Evaluated at an elevation z:
 - $q_z = 0.00256V^2IK_zK_{zt}K_d$
- Evaluated at the building mean roof elevation, h:
 - $q_{h} = 0.00256V^{2}I K_{h}K_{ht}K_{d}$

Wind Design Flow Chart

Method 1: Simplified Procedure

Minimum Wind Pressure = 10 psf

Exposure Factors

Topography Factor

Basic Wind Speed

	Exposure [3.3.6.3] Adjustment.		pography, Kz [3.3.5.7]	t			Ba /elo	sic [Tal	Wir ble Pre	nd S 3.3	ipee .1] ure.	ed Dean)		
	[3.3.1B]	p _s	= λ . K _{zt} . I. p _{s3}	0 ×				[]	3.3	.1A]]	P 330			
	Basic Wind Speed (3-s Gust Wind	Speed) in mph		Main Wind Fo	orce Res	isting S	vatem - N	fethod				ſ.	h	≤ 60 ft	
Table 3.3.1			Figure 3.3.1	(cont'd)		Design Wind Pressures									
				Enclosed Buildings Walls & Roofs											
		Basic Wind Speed (mph)	Simplified Design Wind Pressure, p_{s30} (psf) (Exposure B at $h = 30$ ft, $K_{21} = 1.0$, with $1 = 1.0$)												
Sr. No.	City/Town		D 1 117 1		e d	Zones									
			Speed (mph)	(degrees)	Loa Cas	Horizontal Pressures Vertical					Pressures Overhangs				
1	Sittwe (Akyab)	140				Α	В	С	D	E	F	G	H	EOH	GOH
2	Kyaukpyu (Kyaukphyu)	140		0 to 5°	1	24.7	-12.9	16.4	-7.6	-29.7	-16.9	-20.7	-13.1	-41.7	-32.7
3	Thandwe (Sandoway)	140		15°	1	31.1	-11.0	20.7	-0./	-29.7	-18.2	-20.7	-14.0	-41.7	-32.7
4	Pathein (Bassein)	120	125	20°	1	34.3	-9.0	22.9	-5.0	-29.7	-20.7	-20.7	-15.7	-41.7	-32.7
5	Bogalay	120	123	25°	1	31.0	5.0	22.5	5.1	-13.8	-18.8	-10.0	-15.1	-25.7	-21.9
6	Yangon (Rangoon)	120		8501. 1	2	27.0	101	221	15.2	-5.2	-10.2	-1.4	-0.5	0.8	112
7	Mawlamyine (Mawlamyaing)	100		30 to 45°	2	27.9	19.1	22.1	15.2	10.7	-8.4	9.3	-6.0	-9.8	-11.2
8	Ye	100		0 to 5°	1	26.8	-13.9	17.8	-8.2	-32.2	-18.3	-22.4	-14.2	-45.1	-35.3
9	Dawei (Tavoy)	100		15°	1	30.2	-12.5	20.1	-7.3	-32.2	-19.7	-22.4	-15.1	-45.1	-35.3
10	Myeik (Mergui)	100	130	20°	1	37.1	-9.8	24.7	-5.4	-32.2	-22.4	-22.4	-17.0	-45.1	-35.3
11	Kawthaung	100	150	25°	1	33.6	5.4	24.3	5.5	-14.9	-20.4	-10.8	-16.4	-27.8	-23.7
12	Bago (Pegu)	100		20 to 150	1	30.1	20.6	24.0	16.5	2.3	-18.3	0.8	-15.7	-10.6	-12.1

Importance Factor

Wind Pressure

Earthquake Load

Earthquake Characterization

Earthquake Design Flow Chart

How the earth is made

Section Cut

- Crust uppermost thin layer, 3-44 miles thick
- Upper Mantle –
 200-250 miles
 thick, 1600 °F
- Lower Mantle –

Why earthquakes happen

4arthquake Com

How do we measure

MAGNITUDE

- Express in Richter Scale
- Cause
- Size of the event

INTENSITY

Merc

• Express in Modified

Denali fault

Focus

Epicenter

Seismic

waves

People notice vibrations like those from a passing truck. Unstable objects disturbed.

IV-VI Slight damage. People run outdoors.

VII–IX

Moderate to heavy damage. Buildings jolted off foundations or destroyed.

X-XII Great destruction. Cracks appear in ground. Waves seen on surface.

INTENSITY

- Express in Modified
 Mercalli Scale
- Effect
 - Damage potential

INTENSITY	l	-	IV	V	VI	VII	VIII	IX	X+		
Shaking	Not felt	Weak	Light	Moderate	Strong	Very Strong	Severe	Violent	Extreme		
Damage	None	None	None	Very slight	Light	Moderate	Moderate/ heavy	Heavy	Very heavy		
Peak Acc	<0.17	0.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124		
Peak Vel	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16 - 31	31-60	60-116	>116		
Peak Acc = Peak ground acceleration (g), Peak Vel = Peak ground velocity (cm/s)											

Sudden earth shaking applies at the base of the buildings

hat are highly vulnerable to earthquake shaking, thoug

Recent earthquakes in this area have caused secondar azards such as landslides that might have contributed t

rom GeoNames Database of Cities with 1,000 or more

MMI	City	Population
VI	Shwebo	88k
v	Mogok	90k
v	Mandalay	1,208k
V	Maymyo	117k
v	Monywa	182k
V	Sagaing	78k
IV	Imphal	223k
IV	Myitkyina	90k
IV	Haka	0
IV	Taunggyi	160k
		100000

Seismic Response

Response Spectrum

Seismic Forces

- Apply to each level with respect of its story mass.
- Total story forces = Base Shear

Earthquake Design Flow Chart

Ground Accelerations Earthquake Load Ground Acceleration, Soil Data **Building Type** V_s, **S**_S, **S**₁ $S_{DS} = 2/3 S_{MS} = 2/3 F_a S_s$ Site Class Risk, Importance, $S_{D1} = 2/3 S_{M1} = 2/3 F_v S_1$ S_A , S_B , S_C , S_D , S_E , S_F $C_{s} = S_{a} I/R$ F_a, F_v Response, R Building Weight, $V = C_S W$ W Design Category, Seismic Design SDC Seismic Design End Requirements

Ground Accelerations Ground Acceleration, S_S, S₁

Ground Accelerations

Spectral Response Acceleration at 2% Probability in 50 Years with 5% Critical Damping, Site Class B

- For buildings,
- oscillation decays at
- 5% critical damping.

Ground Accelerations • Site Class

SITE CLASS	SOIL PROFILE	AVERAGE PROPERTIES IN TOP 100 feet						
	NAME	Shear wave velocity, v _s , (ft/s)	SPT, N	Undrained shear, s _u , (psf)				
А	Hard rock	v s > 5,000	N/A	N/A				
В	Rock	2,500 > v _s > 5,000	N/A	N/A				
С	Very dense soil and soft rock	1,200 ≤ v _s ≤ 2,500	N > 50	s _u ≤ 2,000				
D	Stiff soil profile	600 ≤ v _s ≤ 1,200	15 ≤ N ≤ 50	1,000 ≤ s _u ≤ 2,000				
E	Soft soil profile	v s < 600	N < 15	s _u < 1,000				
F	Very soft /	v soft / Need further investigation.						

Soil Factors

Site Class

Spectral Response Acceleration at 2% Probability in 50 Years with 5% Critical Damping, **Site Class B**

Soil Factors F_a, F_v

Site Coefficients $F_a,\,F_v$

Fa: Site modification fact

Fa: Site **fooslife**t**periad**tor for short period, Short Short Buildings

TABLE 3.4.3 SITE COEFFICIENT, F_a

	Mapped Maximum Considered Earthquake Spectral Response Acceleration Parameter at Short Period								
Site Class	SS ≤ 0.25	<i>S</i> <u>S</u> = 0.5	<i>S</i> <u>S</u> = 0.75	<i>S</i> <u>S</u> = 1.0	<i>S</i> <u>S</u> ≥ 1.25				
A	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
E	2.5	1.7	1.2	0.9	0.9				
F		S	ee Section 11.3	.4.7					

NOTE: Use straight-line interpolation for intermediate values of S_s.

Fv: Site modification factor for long period Fv: Site modification fact Tall Buildin to read for the formation fact

Tall Buildings

TABLE 3.4.4 SITE COEFFICIENT, E.

Site Class	Mapped Maximum Considered Earthquake Spectral Response Acceleration Parameter at 1-s Period								
	$s_1 \leq 0.1$	$S_1 = 0.2$	$S_1 = 0.3$	$S_1 = 0.4$	$s_1 \ge 0.5$				
A	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.7	1.6	1.5	1.4	1.3				
D	2.4	2.0	1.8	1.6	1.5				
E	3.5	3.2	2.8	2.4	2.4				
F	•	Se	e Section 11.3	.4.7					

NOTE : Use straight-line interpolation for intermediate values of S_1 .

Design Acceleration, MCE to DBE

Design Acceleration, MCE to DBE s

- SDS = 2/3 Fa Ss
- $S_{D1} = 2/3 F_v S_1$

MCE: Maximum Considered Earthquake

(2% probability in 50 years)

Frapphrance (Bisk) Sactor

Importance (Risk) Factor Importance Factor, I

Risk Category	Nature of Occupancy
Ι	Representing a low hazard to human life in the event of failure
II	Except those listed in other categories
III	Represent a substantial hazard to human life in the event of failure
IV	Designed as essential facilities

TABLE 3.4.6 IMPORTANCE FACTORS

Occupancy Category	I
I or II	1.0
III	1.25
IV	1.5

Response (Ductility) Factors Earthquake Load

Response (Ductility) Factors Response Factors: R, C_d, Ω_0

Seismic Force Resisting Systems

- A Bearing Wall Systems
- B Building Frame Systems
- C Moment Resisting Frame Systems
- •D Dual Systems with SMRS
- •E Dual Systems with IMRS
- •F Shear Wall Frame Interactive Systems
- •G Cantilever Column Systems
- •H Steel Systems

Lateral Displacement (Roof Drift)

Seismic Force-Resisting	7-05, Jired	onse ication or, R ^a	n Over ngth r, Ω _d #	ction ication _r , C _d ^b	Structural System Limitations and Building Height (ft) Limit ^e Seismic Design Category						
STEMS System	Le CE Requ Deta	kesp odifi acto	sten strei acto	Defle							
	4	- 2 -	γ. π	AA	В	С	D ^d	Ed	F		
A. BEARING WALL SYSTEMS								10			
1.Special reinforced concrete shear walls	14.2	5	21/2	5	NL	NL	160	160	100		
2.Ordinary reinforced concrete shear walls	14.2	4	21/2	4	NL	NL	NP	NP	NP		
3. Detailed plain concrete shear walls	14.2	2	21/2	2	NL	NP	NP	NP	NP		
4. Ordinary plain concrete shear walls	14.2	11/2	21/2	11/2	NL	NP	NP	NP	NP		
5.Intermediate precast shear walls	14.2	4	21/2	4	NL	NL	40 ^k	40 ^k	40 ^k		
6. Ordinary precast shear walls	14.2	м	21/2	3	NL	NP	NP	NP	NP		
7. Special reinforced masonry shear walls	14.4	5	21/2	31/2	NL	NL	160	160	100		
8. Intermediate reinforced masonry shear walls	14.4	31⁄2	21/2	21/4	NL	NL	NP	NP	NP		
9. Ordinary reinforced masonry shear walls	14.4	2	21/2	1%	NL	160	NP	NP	NP		
10. Detailed plain masonry shear walls	14.4	2	21/2	1%	NL	NP	NP	NP	NP		

Response (Ductility) Factors Response Factors: R, Cd, 20 Building

Seismic Force Resisting Systems

- •A Bearing Wall Systems
- •B Building Frame Systems
- C Moment Resisting Frame Systems
- •D Dual Systems with SMRS
- •E Dual Systems with IMRS
- •F Shear Wall Frame Interactive Systems
- •G Cantilever Column Systems

•H Steel Systems

L_{015} , n, C_{d}, Ω_{0}	Defailing Def						Suild by S	ystem ing He Seismic	Limitat ight Liu Desig	tions a mitatio In Cate	nd Ins (ft) Igory
Basic Seismic-force Resisting System	Section	R	Ωο	Cd	В	с	D	E	F		
Bearing Wall Systems											
Special reinforced concrete shear walls	14.2 and 14.2.3.6	5	21/2	5	NL	NL	160	160	100		
Ordinary reinforced concrete shear walls	14.2 and 14.2.3.4	4	21/2	4	NL	NL	NP	NP	NP		
Detailed plain concrete shear walls	14.2 and 14.2.3.2	2	21/2	2	NL	NP	NP	NP	NP		
Ordinary plain concrete shear walls	14.2 and 14.2.3.1	11/2	21/2	11/2	NL	NP	NP	NP	NP		
Intermediate precast shear walls	14.2 and 14.2.3.5	4	21/2	4	NL	NL	401	401	401		
Ordinary precast shear walls	14.2 and 14.2.3.3	3	21/2	3	NL	NP	NP	NP	NP		
Building Frame Systems							R	00 XA			
Special reinforced concrete shear walls	14.2 and 14.2.3.6	6	21/2	5	NL	NL	160	160	100		
Ordinary reinforced concrete shear walls	14.2 and 14.2.3.4	5	21/2	41/2	NL	NL	NP	NP	NP		
Detailed plain concrete shear walls	14.2 and 14.2.3.2	2	21/2	2	NL	NP	NP	NP	NP		
Ordinary plain concrete shear walls	14.2 and 14.2.3.1	11/2	21/2	11/2	NL	NP	NP	NP	NP		
Intermediate precast shear walls	14.2 and 14.2.3.5	5	21/2	41/2	NL	NL	401	401	401		
Ordinary precast shear walls	14.2 and 14.2.3.3	4	21/2	4	NL	NP	NP	NP	NP		
Moment-resisting Frame Systems								814 SA			
Special reinforced concrete moment frames	12.2.5.5 and 14.2	8	3	51/2	NL	NL	NL	NL	NL		
Intermediate reinforced concrete moment frames	14.2	5	3	41/2	NL	NL	NP	NP	NP		
Ordinary reinforced concrete moment frames	14.2	3	3	21/2	NL	NP	NP	NP	NP		
Dual Systems with Special Moment Frames		_	_		_	_	-	_			
Special reinforced concrete shear walls	14.2	7	21/2	51/2	NL	NL	NL	NL	NL		
Ordinary reinforced concrete shear walls	14.2	6	21/2	5	NL	NP	NP	NP	NP		
Dual Systems with Intermediate Moment Frames											
Special reinforced concrete shear walls	14.2	61/2	21/2	5	NL	NL	160	100	100		
Ordinary reinforced concrete shear walls	14.2	51/2	21/2	41/2	NL	NL	NP	NP	NP		
Shear Wall-frame Interactive System with Ordinary Reinforced Concrete Moment Frames and Ordinary Reinforced Concrete Shear Walls	12.2.5.10 and 14.2	41/2	21/2	4	NL	NP	NP	NP	NP		

Response (Ductility) Factors

Seismic Coefficient, Cs Earthquake Load Soil Data Ground Acceleration, Building Type V_s, **S**_S, **S**₁ $S_{DS} = 2/3 S_{MS} = 2/3 F_a S_s$ Site Class Risk, Importance, $S_{D1} = 2/3 S_{M1} = 2/3 F_v S_1$ S_A , S_B , S_C , S_D , S_E , S_F $C_{S} = S_{a} I/R$ F_a, F_v Response, R Building Weight, $V = C_S W$ W Design Category, Seismic Design SDC Seismic Design End Requirements

Eaisthig Dasien Category, SDC

Seismic Design Category, SDC

Seismic Design C

There are various correlations of the qualitative Modified Mercalli Intensity (MMI) with quantitative characterizations of ground-shaking limits for the various SDCs.

MMI V	No real damage	SDC A	$0 \le S_{Ml} \le 0.1g$
MMI VI	Light nonstructural damage	SDC B	$0.1g < S_{M1} < 0.2g$
MMI VII	Hazardous nonstructural damage	SDC C	$0.2g < S_{M1} < 0.3g$
MMI VIII	Hazardous damage to susceptible structures	SDC D	$0.3 \le S_{Ml} \le 1.12g$
MMI IX	Hazardous damage to robust structures	SDC E	$S_{M1} > 1.125g$

Risk Category	Nature of Occupancy	ULLUPAILLY	
Ι	Representing a low hazard to human life in the event of failure	• •	
II	Except those listed in other categories	×	
III	Represent a substantial hazard to human life in the event of failure		
IV	Designed as essential facilities		

S _{ds} ,	S _{D1}	Level of Seismicity	1&11	III	IV
<0.167 g	<0.067 g	Very Low	А	А	А
0.167 to 0.33 g	0.067 to 0.133 g	Low	A	В	с
0.33 to 0.5 g	0.133 to 0.2 g	Moderate	В	С	D
>0.5 g	>0.2 g	High	С	D	D

Seismic Design Requirements

Table 6.6.3.1.1(a)—Moment of inertia and crosssectional area permitted for elastic analysis at factored load level

Member and condition Columns		Moment of Inertia 0.70Ig	Cross-sectional area
Cracked	0.35Ig		
Beams		0.35Ig	
Flat plates and flat slabs		0.25Ig	

Seismic Design Requirements

TABLE 12.6-1 PERMITTED ANALYTICAL PROCEDURES

Seismic Design Category	Structural Characteristics	Equivalent Lateral Force Analysis Section 12.8	Modal Response Spectrum Analysis Section 12.9	Seismic Response History Procedures Chapter 16
B, C	Occupancy Category I or II buildings of light-framed construction not exceeding 3 stories in height	Р	Р	Р
	Other Occupancy Category I or II buildings not exceeding 2 stories in height	Р	Р	Р
	All other structures	Р	Р	Р
D, E, F	Occupancy Category 1 or II buildings of light-framed construction not exceeding 3 stories in height	Р	Р	Р
	Other Occupancy Category I or II buildings not exceeding 2 stories in height	Р	Р	Р
	Regular structures with $T < 3.5T_s$ and all structures of light frame construction	Р	Р	Р
	Irregular structures with $T < 3.5T_s$ and having only horizontal irregularities Type 2, 3, 4, or 5 of Table 12.2-1 or vertical irregularities Type 4, 5a, or 5b of Table 12.3-1	Р	Р	Р
	All other structures	NP	Р	Р

SDC	Building Type and Expected MMI	Seismic Criteria
A	Buildings located in regions hav- ing a very small probability of experiencing damaging earth- quake effects	No specific seismic design requirements but structures are required to have complete lateral- force-resisting systems and to meet basic structural integrity criteria.
В	Structures of ordinary occupancy that could experience moderate (MMI VI) intensity shaking	Structures must be designed to resist seismic forces.
С	Structures of ordinary occupancy	Structures must be designed to resist seismic forces.
	that could experience strong (MMI VII) and important structures that could experience moderate (MMI VI) shaking	Critical nonstructural components must be provided with seismic restraint.
D	Structures of ordinary occupancy that could experience very strong shaking (MMI VIII) and important structures that could experience	Structures must be designed to resist seismic forces.
		Only structural systems capable of providing good performance are permitted.
	MMI VII shaking	Nonstructural components that could cause injury must be provided with seismic restraint.
		Nonstructural systems required for life safety protection must be demonstrated to be capable of post-earthquake functionality.
		Special construction quality assurance measures are required.
		Ac

SDC	Building Type and Expected MMI	Seismic Criteria							
E	Structures of ordinary occupancy	Structures must be designed to resist seismic forces.							
	located within a few kilometers of major active faults capable of producing MMLIX or more intense	Only structural systems that are capable of providing superior performance permitted.							
	shaking	Many types of irregularities are prohibited.							
		Nonstructural components that could cause injury must be provided with seismic restraint.							
		Nonstructural systems required for life safety protection must be demonstrated to be capable of post-earthquake functionality.							
		Special construction quality assurance measures are required.							
F	Critically important structures	Structures must be designed to resist seismic forces.							
	of major active faults capable of producing MMLIX or more intense	Only structural systems capable of providing superior performance permitted are permitted.							
	shaking	Many types of irregularities are prohibited.							
		Nonstructural components that could cause injury must be provided with seismic restraint.							
		Nonstructural systems required for facility function must be demonstrated to be capable of post- earthquake functionality.							
		Special construction quality assurance measures are required.							

Itom	Type	Description		SDC B C D E F			lecuo	Reference	
nem	Type	Description	В			F	Issue	Neierence	
H1a	Torsional	The maximum storey drift, computed including accidental			٧	٧	٧	Force Increase	3.4.3.3.4
	Irregularity	torsion, at one end of the structure transverse to an axis is			٧	٧	٧	Analysis Limit	3.4.6, Table 3.4.12
		more than 1.2 times the average of the storey drifts at the	.,	.,	.,	.,	.,	2D Madal	3.4.7.3, ASCE7-05
		two ends of the structure. Torsional irregularity	v	v	v	v	v	SD WOUL	16.2.2
		requirements in the reference sections apply only to		٧	٧	٧	٧	Torsion Limit	3.4.8.4.3
		structures in which the diaphragms are rigid or semirigid.		٧	٧	٧	٧	Drift Limit	3.4.12.1
H1b	Extreme	The maximum storey drift, computed including accidental				Not Permit		Not Permit	3.4.3.3.1
	Torsional	torsion, at one end of the structure transverse to an axis is			٧			Force Increase	3.4.3.3.4
	Irregularity	more than 1.4 times the average of the storey drifts at the			٧			Analysis Limit	3.4.6, Table 3.4.12
		two ends of the structure. Extreme torsional irregularity	.,	.,	.,	Х	X	2D Madal	3.4.7.3, ASCE7-05
		requirements in the reference sections apply only to	v	v	v			SD WOUL	16.2.2
		structures in which the diaphragms are rigid or semirigid.		٧	٧			Torsion Limit	3.4.8.4.3
				٧	٧			Drift Limit	3.4.12.1
H2	Reentrant	Both plan projections of the structure beyond a reentrant			v	v	v	Force Increase	3.4.3.3.4
	Corner	corner are greater than 15% of the plan dimension of the	-	\vdash					
		structure in the given direction.			V	v	v	Drift Limit	3.4.12.1
H3	Diaphragm	There are diaphragms with abrupt discontinuities or							
	Discontinuity	variations in stiffness, including those having cutout or			v	v	V	Force Increase	3.4.3.3.4
		open areas greater than 50% of the gross enclosed	-	\vdash		-	-		
		diaphragm area, or changes in effective diaphragm			v	v	v	Drift Limit	3.4.12.1
		stiffness of more than 50% from one storey to the next.							
H4	Out-of-Plane	There are discontinuities in a lateral force-resistance path,	٧	٧	٧	٧	٧	Redundancy	3.4.3.3.3
	Offsets	such as out-ofplane offsets of the vertical elements.			٧	٧	٧	Force Increase	3.4.3.3.4
					٧	٧	٧	Analysis Limit	3.4.6, Table 3.4.12
			.,	.,	.,	.,	.,	2D Madal	3.4.7.3, ASCE7-05
			v	v	v	v	v	SD WOder	16.2.2
H5	Nonparallel	The vertical lateral force-resisting elements are not parallel		٧	٧	٧	٧	Directional	3.4.5.3
	System	to or symmetric about the major orthogonal axes of the			٧	٧	٧	Analysis Limit	3.4.6, Table 3.4.12
		seismic force-resisting system.	.,	.,	.,	.,	.,	2D Madal	3.4.7.3, ASCE7-05
			V	V	v	V	v	SD Wodel	16.2.2

Itom	T	Description		SDC				lasua	Defenses
item	туре	Description	В	С	DEF		issue	Reference	
V1a	Soft Story	A storey in which the lateral stiffness is less than 70% of							
	(Stiffness)	that in the storey above or less than 80% of the average			v	٧	v	Analysis Limit	3.4.6, Table 3.4.12
		stiffness of the three storeys above.							
V1b	Extreme Soft	A storey in which the lateral stiffness is less than 60% of				х	x	Redundancy	3.4.3.3.3
	Story	that in the storey above or less than 70% of the average							
	(Stiffness)	stiffness of the three storeys above.			v	v	v	Analysis Limit	3.4.6, Table 3.4.12
V2	Weight	The effective mass of any storey is more than 150% of the							
	Irregularity	effective mass of an adjacent storey. A roof that is lighter			٧	٧	٧	Analysis Limit	3.4.6, Table 3.4.12
		than the floor below need not be considered.							
V3	Vertical	The horizontal dimension of the seismic force–resisting							
	Geometry	system in any storey is more than 130% of that in an			v	٧	٧	Analysis Limit	3.4.6, Table 3.4.12
		adjacent storey.							
V4	In-plane	An in-plane offset of the lateral force-resisting elements is	v	v	v	v	٧	Redundancy	3.4.3.3.3
	Discontinuity	greater than the length of those elements or there exists a				v	v	Force Increase	3.4.3.3.4
		reduction in stiffness of the resisting element in the storey			.,	- /	-1		2 4 C Table 2 4 12
		below.			v	V	V	Analysis Limit	3.4.0, Table 3.4.12
V5a	Weak Story	The storey lateral strength is less than 80% of that in the				x	x	Not Permit	34331
	(Strength)	storey above. The storey lateral strength is the total lateral				<u> </u>	^	Notrenite	514151511
		strength of all seismic-resisting elements sharing the storey						Analysis Limit	2 4 6 Table 2 4 12
		shear for the direction under consideration.			v	v	v		5.4.0, Table 5.4.12
V5b	Extreme	The storey lateral strength is less than 65% of that in the						Not Permit	3.4.3.3.1
	Weak Story	storey above. The storey strength is the total strength of all	1	1	v	v	v	Hoight Limit	21222
	(Strength)	seismic-resisting elements sharing the storey shear for the	v	v	^	^	^		5.4.3.3.2
		direction under consideration.						Analysis Limit	3.4.6, Table 3.4.12

	Occupancy Category						
Structure	l or ll	ш	IV				
Structures, other than masonry shear wall structures, 4 storeys or less with interior walls, partitions, ceilings and exterior wall systems that have been designed to accommodate the storey drifts.	0.025 <i>h_{sx}c</i>	0.020 <i>hsx</i>	0.015 <i>hsx</i>				
Masonry cantilever shear wall structures ^d	0.010 <i>h_{sx}</i>	0.010h _{sx}	0.010 <i>h</i> _{sx}				
Other masonry shear wall structures	0.007 <i>h</i> _{sx}	0.007 <i>h</i> _{sx}	0.007 <i>h</i> _{sx}				
All other structures	0.020 <i>h</i> _{sx}	0.020 <i>h</i> _{sx}	0.020h _{sx}				

Story Level 2

 δ_2

δe1

δ1

- F_2 strength-level design earthquake force =
- δe2 elastic displacement computed under = strength-level design earthquake forces
 - Cd δ_{e2}/IE = amplified displacement =
- $(\delta_{e2} \cdot \delta_{e1}) C_d / I_E \leq \Delta_a$ (Table 12.12-1) Δ_2 =

Story Level 1

- strength-level design earthquake force =
- elastic displacement computed under =
- strength-level design earthquake forces
- $C_d \delta_{e1}/I_E$ = amplified displacement =

 $\delta_1 \leq \Delta_a$ (Table 12.12-1) Δ_1 =

Story Drift Δ_i = Story Drift Ratio $\Delta I / L_{I}$ = **Total Displacement** δ2 =

MNBC 2020, Part 3, Structural Design Scope

Hazard, Load, Safety: - MNBC 2020

- Strength, Capacity, Member Design:
 - Concrete: ACI
 - Steel: AISC
 - Masonry: Not Yet
 - Timber and Bamboo: Not Yet
 - Cold-form, Aluminum: Not Yet

Way Forward

- Adopted in 2020
- Needs
 - Corrections
 - Typo Errors
 - Inappropriate Translations
 - Modifications and Adjustments
- Prepare for next update, 2025?
- •
- •
- •
- Thank you.