TENDER STAGE VS CONSTRUCTION STAGE AWARENESS FOR QUANTITY SURVEYORS

Presented by Kyi Kyi Win

26th February,2024

MY RESUME

- Kyi Kyi Win
- A.G.T.I (Civil) (1982-1985)
- B.A (Myanmar) (1990-1993)
- RSE 0076 (2015)
- 1986 to 1989 Irrigation Department
- 1989 to 1996 Meikhtila G.T.I
- 1996 to Present Al Construction Company

YANGON – MANDALAY RAILWAY IMPROVEMENT PROJECT

CONTENTS

- Aims & Objectives
- Project

- Earth Work
- Culvert
- Track Work
- Station Structure

Objective

- Awareness for Quantity Surveyors in Tender Stage vs Construction Stage for Construction Projects

- Importance of Technical and Contractual consideration in Bills of Quantities

- Importance of Quantity Surveyors' Knowledge and Competency in Costing for Tenders

About Project

Yangon-Mandalay Railway Line

- 620 km double track.
- the most important railway among the 5,876 km total track system of Myanmar.
- 96 stations.
- The current travel time is about 15-16 hours.
- To achieve the maximum train running speed of 100 km /hour and operation service of less than 8 hours.

Scope of Work – Civil Work and Track Work - Signalling and Telecommunication Track System - To install JIS 50N rail.(50 kg/m) - To remove the BS 75R rail and Old sleeper. Install new ballast, new concrete sleeper. JIS 50N rail for Main Line. BS 75R rail for Loop line. Project -Phase I – Yangon to Taungoo

Phase II – Taungoo to Mandalay

Budget – JICA Loan Budget

Project Period – 2019 November to 2024 May

Train Operation – Single Line Track Operation

Window Time – Approxim: 6 hours of every night

Materials Supply –

1.50N rail by Main Contractor(Japan Company)

2. Main Ballast by Myanmar Railway

3. Concrete Sleeper by Myanmar Railway

4. The Other by Sub Contractor

eg – Approved soil, Subballast, Concrete,

Formwork, Rebar, Brick, Cement and Finishing work

Phase I -	CP 101–Yangon to Bago	
	CP 102 - Bago to Nyaunglebin	
	CP 103 - Nyaunglebin to Taung	<u>500</u>

Description	CP 101	CP 102	CP 103
Total Track Length (M)	162,702	173,878	240,349
Total P.C Girder Bridge (No)	9	17	8
Total Box Culvert (No)	37	57	105
Total Sub ballast Qty (M³)	233,116	272,403	387,047
Total Platform Area (M ²)	22,498	24,744	28,246
Total Signal House (N0)	13	13	17

CP-101 (70.78 Km)

- 1. Earth Works
- 2. Track Works
- 3. Bridge Works Bridges and Culverts
- 4. Station Structures
- 5. Other Civil Works
- 6. Signalling Works
- 7. Telecommunication Works

EARTH WORKS

			_
Item No.	Description	Unit	
3.1.1	Site Clearing and Grubbing	sq.m.	
3.2.1	General Excavation	cu.m.	
3.2.2	Excavation and Temporary Stockpiling of the Existing Ballast	cu.m.	
3.3.1	Roadbed (Sub-ballast) by new sub-ballast material	cu.m.	
3.3.2	Roadbed (Sub-ballast) by existing ballast	cu.m.	
3.3.3	Embankment Filling	cu.m.	
3.3.4	Removal and Replace of Unsatisfied Existing Subgrade	cu.m.	
3.4.1	Sodding	sq.m.	
3.4.2	Stone Pitching	sq.m.	
3.5.1	Reatning Wall (Gravity Type)	cu.m.	
3.6.1	Surcharging	cu.m.	
3.6.2	Install Old Rails	m	
3.6.3	Continuous RC Capping Beam	cu.m.	
3.6.4	Replace of Soft Soil by Suitable Material	cu.m.	
	TOTAL		

Site Clearing and Grubbing

3.3.1 Method of Measurement

- (1) "Site Clearing and Grubbing" shall be measured in square meter (m2).
- (2) "Site Clearing and Grubbing" shall be measured in following items:
 - a) Payment for Site Clearing and Grubbing shall be made only for the locations under new permanent or temporary embankment of the track as shown on the drawings.
 - b) The area of "Site Clearing and Grubbing" shall be measured as the existing ground area underneath the permanent and temporary embankment in square meter (m2).
 - c) Temporary embankment means embankment, which is necessary for temporary track operation, but not includes embankment for temporary access road.

Site Clearing and Grubbing

Roadbed (Sub-ballast) by new sub-ballast material

Table 5.1	Percent	passing for	testing of Roadbed	(Sub-ballast)	material

Sieve Designatio	Percentage passing
50 mm (2")	100 %
25 mm (1")	90% to 100%
9,5 mm (2/8")	50 % to 84 %
2 mm (No.10)	26 % to 50 %
0,425 mm (No.40)	12 % to 30 %
0,075 mm (No.200)	0 % to 10 %

The material shall conform to the following standards and requirement:

- Liquid Limit (AASHTO T 89)
 25 % max.
- Plasticity Index (AASHTO T 90)
 6 % max.
- Sand Equivalent (AASHTO T 176)
- Loss by Abrasion (AASHTO T 96)
- Minimum Dry Density (AASHTO T 180)

- 25 % min. 50% max.
- $2.0 \mathrm{gr/cm^2}$

Sub-Ballast Materials Mixing Works

Subgrade Compaction Works

Sub-ballast Filling Works

Sub ballast mixing Ratio

3/4" – 10% 1/2" - 15% 3/8" – 15% Fine – 60%

- 1. Mixing & Transportation Allowance 40%
- 2. Side Shape Allowance -7%
- **3.** Compaction Allowance 35%

Total Allowance – 82%In Breakdown-35%Claimed Qty: 0.762 m³/mSupplied Qty: 1.386 m³/m

Sub-ballast Laying work by Paver

Embankment Filling

- To know requirement total volumn.
- To know location of borrow quarries.
- To know condition of Route.

At least 1 boring or 1 test pit every 10,000 M³

(2) Laboratory Tests of Quarry Material

The following laboratory tests will be carried out to ascertain the characteristics and suitability of the materials:

- c) granulometry (at least one every 5,000 cu.m. of material);
- d) natural water content (at least one every 5,000 cu.m of material)
- e) liquid limit and the plastic limit on the portion of the material which passes through a 0.4 UNI 2332 sieve (at least one every 5,000 cu.m of material);
- f) granulometric analysis of the materials used in the compaction test which are suspected of containing unsuitable materials, both before and after the test;

Embankment Filling (compaction & Shape allow: 80%)

TRACK WORKS

Train Operating Speed

Main Line - 100 km/h

Others: 70km/h

Table 1.1Speed Restriction at Curves

+	•			
	Radius (m)	Speed Restriction		
	>500	100 km/h		
	450-500	95 km/h		
	400-450	90 km/h		
	350-400	85 km/h		
	300-350	75 km/h		
	250-300	70 km/h		
	200-250	60 km/h		
	150-200	50 km/h		
	100-150	40 km/h		
		•		

Table 1.2 Speed Restrictions on Turnouts

Turnout No.	Speed Restriction
8	25 Km/h
10	35 Km/h
12	40 Km/h

Speed Restriction at Loops and Sidings

The Speed Restriction at Sidings is as follows:

- a) Sub main lines: 25 km/h~40 km
- b) Sidings: 25 km/h

Note

- JIS 50 rail 50kg/m , 50m/1no
- BS 75 rail 75lb/yard , 12m/1no
- CWR Continuous welded rail (200m, 600m)
- Compromise Rail: To connect two different rails (JIS 50N to BS 75R)
- Flash butt welding -. end to end are electronically charged
- Thermit Welding -used by iron oxide and aluminum powder

Breakdown Comparison

Item No	Description
	Track Laying Work for One meter
1	Transporting of Fastenings
2	Transporting of Rails
3	Transporting of P.C Sleepers
4	Track Linking
5	Ballasting, Compacting & Levelling
6	lst Tamping by Hand Tie Tamper
7	2nd Tamping by Hydraulic Tamping Machine
8	3rd Tamping by M.T.T & Dressing
9	Flash - butt Welding

TRACK LAYING WORK BREAKDOWN (BY CONSTRUCTION STAGE)

Item No	Description
	Track Laying Work for One meter
1	Transporting of Fastenings
2	Transporting of Rails
3	Transporting of P.C Sleepers
4	Track Linking
5	Ballasting, Compacting & Levelling
6	1st Tamping by Hand Tie Tamper
7	2nd Tamping by Hydraulic Tamping Machine
8	3rd Tamping by M.T.T & Dressing
9	Flash - butt Welding
10	Destressing
11	Thermit Welding
12	Profilling & Site Cleanning
	Track Laying Work for One meter

Track Yellow Book

Track Yellow Book.pdf

Ballast Unloading on Site

Bottom Ballast Compaction Work

P.C Sleeper Loading at Stock Yard

Sleeper unloading Works

PC Sleeper Sprading Work

Rail Transportation for Short Rail

Rail Transportation for Long Rail

Rail Shifting and Laying on P.C Sleeper

Rail Shifting and Laying on P.C Sleeper

Rail Shifting and Laying on P.C Sleeper

Rail Installation

Rail Clip and Rubber Pad

Sleeper Spacing Square and Clipping

Top Ballast Filling

1st Tamping by Hand Tie Tamper

Ballast Filling after Tamping

2nd Tamping by Hydraulic Tamping Machine

2nd Tamping by Hydraulic Tamping Machine

Multi Tie Tamping Machine

Final Tamping by Multi Tie Tamping Machine

Ballast Profile Regulator

Rail Destressing before Welding Work

Rail Destressing before Welding Work

Track laying and IRJ joint spacing squareness inspection

Rectification Work

Ballast shoulder profiling work

Final Handover

Breakdown by Track Laying Work

No	Work Item		R	tesource	Productivity	Remark
		Mai	npower	Machinery		
I	Track Work	Project Engineers	Skilled Labours	Machinery		
1	Bottom Ballast Laying Work		Labour-15 Nos	20T, 8T Excavator/ 10 T Compactor	150 m/day	
2	Sleeper Laying & Adjustment Work		Labour-12 Nos	20 T Excavator	150 m/day	Required Hand Tools are already
3	Rail Installation Work	4 Nos for Each Season (1,2 &3)	Labour-45 Nos	Rail Changers-23 Nos	200 m/day	prepared and maintained.
	Top Ballasting Work		Labour-24 Nos		250 m/day	
5	1st & 2nd Tamping Work			Hand Tie Tamper(1 No), Hydraulic Tamping Machine (1 Nos)	150 m/day	Assisted by Operators and Mechanics
6	Destressing Work		Labour-40 Nos	Bottom Rollers, Side Rollers	600 m/day	Procurement already completed.
7	Final Tamping Work with MTT		Labour-15 Nos		1km/day	

CULVERT WORKS

			1
4.2	Culvert Works		
4.2.1.(a)	Dismantle and Demolition (Existing Superstructure)	span	
4.2.1.(b)	Dismantle and Demolition (Existing Substructure)	nr	
4.2.1.(c)	Foundation (Rail Piles with Vibratory Method)	m	
4.2.1.(d)	Foundation (Rail Piles with Press-In Method)	m	
4.2.1.(e)	Culvert	m	••••
4.2.1.(f)	Wing Wall	LS	
4.2.1.(g)	Revetment	m	
4.2.1.(h)	Drop Structure	LS	
4.2.1.(i)	Gabion	cu.m	••••
4.2.1.(j)	Temporary Works (Temporary Access Road)	LS	
4.2.1.(k)	Temporary Works (Watercourse Management)	LS	
4.2.1.(l)	Temporary Works (Temporary Retaining Wall)	nr	
4.2.1.(m)	Temporary Works (Load Supprt Frame)	LS	
		†	ľ

Wall & Slab Formwork (One time use)

Wall & Slab Formwork (One time use)

Gabion ($800 \ge 600 \ge 400$)

Gabion ($800 \ge 600 \ge 400$)

STATION STRUCTURE

STATIO	N STRUCTURES	
Item No.	Description	Unit
5.1.1 (b)	Platform	sq.m.
5.1.2	Station Lewel Crossing and Stair (w=1.5m)	m
5.1.3 (b)	FOB	nos
5.1.4 (d)	U Ditch (B400mm×H600mm)	m
5.1.4 (e)	Catch Basin	nos
5.2.1.(h)	Embankment Widening for Signalling System Foundation	cu.m.
5.2.2.(a)	Transformer Foundation Type-A(incl. Fence)	nos
5.3.1	Signal Cabin Type-3 (MSH)	nr
5.3.2	Signal Cabin Type-2A (SH)	nr
5.3.3	Signal House Type-2B (MSH)	nr
5.3.4	Signal House Type-1A Ver.1 (SSH)	nr
5.3.5	Relay House Type-1B Ver.1	nr
5.3.6	Precast Concrete Pile	m
5.5	Removal and Repairing of Platform Shed	m
	TOTAL	

Platform Backfilling Work

Temporary Roofing Work

Formwork for Signal House

Brick Work for Signal House

Conclusion

- Lesson learnt for future tenders

- Competence of Quantity Surveyors

- Pitfalls in Tender Stage

- Technical and Contractual reflection for tender costing

SO MANY THANKS FOR YOUR ATTENTIONS

Kyi Kyi Win (R.S.E – 0076)