

Geosynthetics-Based Solutions for Resilience and Sustainability of Civil Construction Works

Dr. Yu Maung PE-0038 (Geo), ACPE-00564 (Civil), AE-9221 Design and Consulting Engineer, Dr. Yu And Associate (DYAA)

- TIME: : 9:10 am to 10:10 am Part-1 10:10 am to 11:30 am – Coffee Break 10:30 am to 11:30 am – Part-2
- DATE: : 26-08-2023, Saturday

Scope of Presentation:

- 1. Introduction
- 2. Knowledge sharing for the Use of Geotextiles in various Geotechnical Design in Civil construction Works
- 3. Conclusion

9:10 am to 10:10 am Part-1 (1hour)

Geosynthetics-Based Solutions for Resilience and Sustainability of Civil Construction Works Date: 26-08-2023, Saturday, for CPD hours Geotechnical Engineering, Technical Division, Fed. MES

Synopsis

- Due to climate change, engineering structures must be designed to new load and foundation standards based on the new code of practice. The new code of practice will interact with current state of the Art. In foundation engineering structures, failures and disasters are mainly triggered by *weather-related hazards and climate-related hazards, and earthquake hazards* as well.
- In order to reduce/eliminate *the risks*, the engineering design must be changed based on the current techniques. In Current State of the Art, for the Sustainable Development Goals (SDGs) adopted by all United Nations Member States in 2015, engineering designs reflect the three dimensions of sustainable development *economic, social and environmental*. Myanmar also should introduce the application of geosynthetic to achieve the Goals.
- Additionally, construction and destruction activities cause significant land, water and air degradation due to environmental impacts including, deforestation, soil erosion and high water resources consumption. We must consider the benefits for the life cycle of engineered structures to achieve the Resilience and Sustainability for construction environment. Solution by geosynthetic application reduces most the environmental impacts and gives the many advantages in construction projects.
- The Author will present the application of geosynthetics in civil construction works and also share the knowledge from some of past experiences of Myanmar/Oversea Projects.

1. Introduction

- i. Resilience and
- ii. Sustainability

Engineering Resilience:

The situation of structures refers to the ability to continue functioning or recover quickly *in the face of external failure* such as water shortage, power failure, or a natural disaster.

Sustainability

To meet the needs of the present *without compromising* the ability of future generations to meet their own needs.

Ref: UN's 1987 World Commission on Environment and Development

Recommended Presentation: Geosynthetics in Civil Engineering and Construction Works

Geosynthetics-Based Solutions

State-of-the-Art on the Applications of Geosynthetics

- 1. More practical and cost-effective solutions can be provided than with traditional building materials.
- 2. Consumption of raw materials is significantly reduced.
- 3. Cost effectiveness (e.g., sand and aggregates, are usually available a long distance from the application site.)
- 4. More beneficial in terms of cost when used with waste materials (In case, need to remove the waste soils)
- 5. Reducing the need to use some of the construction machinery than natural soils.
- 6. As a summary, reducing the environmental impact of construction through the use of geosynthetics.

Therefore, the use of geosynthetics may significantly reduce greenhouse gas emissions during the construction and destruction of geotechnical structures.

Slope stability and

Construction Materials

The basic construction materials used in civil engineering applications or in construction projects are:

Hard core

levelling work

Sand levelling

work

Wood.

Earthwork

- Cement and concrete.
- Bitumen and bituminous materials.
- Structural clay and concrete units.
- Reinforcing and structural steels, etc.,
- Geosynthetics, etc.,

Rock and Soil as Engineering Construction Materials

• Use of Geosynthetics in Civil Construction Works

Different Varieties of Geosynthetic (International Geosynthetic Society)

Function	Suitable geosynthetics
Barrier	Geomembranes
Protection	Thick nonwoven geotextiles
Drainage,	Geotextiles, Geonets, Geomembranes,
Seepage control	Geocomposites (geosynthetic clay liners (GCL))
Erosion control	Geocells, Geonets, Geotextiles, Geotubes, Gabion
Filtration	Geotextiles (Fluid flow across of the geosynthetic)
Reinforcement	Geogrids, Geotextiles, Polymeric strips
Separation	Geogrids, Geotextiles (Intermingling of dissimilar materials)

Reinforcement function

Erosion control function

Barrier function

Protection function for tear, abrasion, impact and puncture

Geocell Drainage geocomposit

Geocomposite for planar Glass f drainage g

Glass filament reinforced Erosion control geocompose geocomposite

Specifications of Geotextiles:

- 1. Mechanical Properties
- 2. Physical properties
- 3. Chemical
- 4. Durability (Design life)

Standard Test Method of Geotextiles:

- ASTM D-6637 for strength test
- ASTM D-7737 for Junction strength test
- ASTM D5261-10(2018) for Measuring Mass per Unit Area
- ASTM D5970-96(2002) for Deterioration from Outdoor Exposure
- Etc.

THILAWA SEZ Industrial Waste Management

• Combined use of Geosynthetics in Land Fill

Combined use of Geosynthetics

Filtration

Reinforcement

2 Barrier

(3

Structure of final cover

Cross Section of Land fill and Final Cover Structure

2. Knowledge sharing for the Use of Geotextiles in various Geotechnical Design in Civil construction Works

Wall Stability by Soil Reinforcement

- **Project:** : Earth Retaining wall, 3.73 m 4.37 m
- Length: : Length 398 m, Backfilling area, 3.293 acres
- Location: : Mandalay
- DATE: : JULY, 2023

Construction Materials

Soil Properties (E, v, c, ϕ) :

- Medium dense recent backfill soil
- Medium stiff silty CLAY
- Stiff silty CLAY
- Very stiff CLAY

New back fill soil (CBR, c, ϕ):

The main design requirements are discussed with Client:

- 1. To be stabilized the wall for additional backfilling
- 2. To control the differential settlement along the wall to prevent wall cracking
- 3. To reduce the long-term settlement of backfill surface
- 4. To check the roadway settlement

Wall Stability by Soil Reinforcement				
No.	Key Factors	Remark		
1	Sliding	SF > 1.50	FHWA	
2	Overturning (eccentricity at base)	Calculation results		
3	Bearing capacity of base soil	SF > 2.00	FHWA	
4	Overall stability	SF > 1.30	FHWA	

Design of Geogrid with Facing for vertical Wall (rigid or segmental facing wall)

- Geogrid segmental retaining wall is used where tall wall is required.
- Segmental retaining wall height is restricted due to stability issues: It can be increased with the help of using woven synthetic sheet or in another term geogrids as successive layers at the back face of the wall.
- Layers are positioned and anchored into the facing blocks in creating reinforced earth unit mass that acts against overturning and sliding actions.
- The geogrid segmental retaining walls can be constructed for height more than 12m.

Segmental Retaining Wall

Engagement of geogrid by a lip of blocks

Selected Design Method: Mechanically Stabilized Earth Walls (MSEW)

Application of Geogrid with Rigid concrete facing and Soldier pile

- 1. Lateral restraints between the geogrid and filled material, which will reduce design capacity of the rigid wall (due to Soil reinforced by geogrids)
- 2. Reducing the potential failure plane, and
- Increasing the bearing capacity tension developed in geogrid and reducing the localized settlement.

Rigid Fa

Properties of Geogrid:

- Mechanical, physical, durability
- Aperture size (36 x 34 mm)
- Strain rate , 13%
- Tensile Strength, 21 kN/m
- ASTM D-6637 for strength test and ASTM D-7737 for Junction strength test

Installation of Geogrid

Types of Geogrids

Design Analysis Methods: Analytical Calculation and FEM

Design Analysis and Results using Analytical Calculation

Guideline:

- 1. Check for sliding at the base
- 2. Check for Soil Bearing Pressure
- 3. Soil bearing capacity

Meyerhof method is used to compute soil bearing pressure for segmental retaining wall. Where B is the total bearing width

 $e = \left[\frac{base \ width}{2}\right] - \left[\frac{\left[(resistance \ moment) - (overturning \ moment)\right]}{total \ vertical \ load}\right]$

 $B_e = effective bearing width = B - 2e$

Ultimate <u>soil bearing capacity</u> is computed by Terzaghi's equation and the cohesion is assumed to be zero:

 $Q_{ultimate} = \gamma dN_q + 0.5\gamma B_e N_\gamma \rightarrow$ Equation 15

ROJECT	NAME: Design of Re	staining Wall Construction and Consolidation Settle	ment Checking		
OCATIO	2N: :1				
lesign Se	ction: : DS-1				
ATE	: 25-6-2023				
Char.		The set of the second sec	Adv Kee	Remark	
Step	Ues	ign calculation procedure	Calculon	rvemank	
1	Design height, external loa	ads			
	Total design height, H, m		4.37		
	Required panel height, m		4.37		
	Traffic/surcharge and fense	required, Max. load, q, kPa	20.00		
	Seamo coefficient, g		0.30		
2	Establish engineering pro	perties of foundation soils			
	Recent back fil, å, deg.		25.00		
	Recent back fil, c, MPa		0.01	A	
	Allowable bearing capacity,	kPa	359.00	results in separate	
	Allowable bearing capacity,	TSF	3.35	sheet	
	Differential settlements on th	re order of 1/300 are estimated			
3	Establish engineering pro	perties for retained and reinforced backfill			
	Retained fill, ¢, deg.		30.00		
	yr, kNim ²	Stability check by	18.80		
	Reinforced backfill, & deg.	Analytical Mathed	34.00		
	γπ, kN/m ²	Analytical Method	18.80		
		(Hand calculation) - (<mark>ok –</mark>		
4	Design factors of safety	in Mainun	1.50		
	Clabel stability FS for side	ng, waimum	1.50		
	Islamal Stability, Minimum	Mainun	1.50		
	Aloughia strates - 0.55 Ev	, water um	1.50		
	Design life users		75.00		
	Lesgn ne, years 73.00				
5	Selection of facing type, reinforcement spacing and type				
	Cast in place concrete well				
	Allowable differential settlements along the wall are 1/500				
	Vertical specing, m 0.60				
6	Determine the preliminary le	ngth for reinforcing strips			
	For horizontal backfill slope length, L = 0.7 H		4.00		
	Suppose, length of reinforcin	ng strips, m	4.00		
7	Checking the external stat	bility			
	Comput the K,= tan2 (45-\$/2	2)	0.33		
	V. = HLy, Wim 328.62				
	Resisting force = V, tang, k	Nim	189.61		
	V ₂ = qL, kN/m		80.08		
	$F_{\gamma} = (\gamma H^2 X_4)/2$, kNim		59.76		
	$F_2 = qHK_{a_2} kN/m$		29.10		

Design Analysis and Results using FEM

- Allowable wall deflection
- Allowable settlements (base and surface)
- Wall stability (Rigid or segmental facing)
 - i. Check the external stability,
 - ii. Check the eccentricity at base,
 - iii. Check the bearing pressure at base
 - iv. Allowable tensile strength of geogrid

Differential Settlement check along the wall < 1/500 for Reinforced structures, ok

Suggestion

The geogrid reinforced retaining wall construction gain the following characteristics:

- The geogrid system is more flexible in nature. The retaining wall with the geogrid system has the higher adapting ability with the deformation of the foundation, when compared with traditional construction, which is very stiffer in nature.
- More flexibility implies they behave well as <u>earthquake resistant</u>.
- The onboard Geogrid arrangement has afforestation protection. This brings environmental benefits, which is an important parameter in sustainable construction.
- It can be made more economical, compared to traditional method. The landfill can be made steeper, which shows a cost reduction. More height in wall and steepness are designed with the help of reinforced soil system.
- The Geogrid retaining wall construction guaranty quality and *reduced cost of construction*.
 With time the geogrid reinforcing retaining wall construction and its have advantages in the construction in *highways, railways, dams, ports*, planning city and projects focusing on the environment.

Segmental Wall at Bridge Approach road

Use of Geogrids and Geotextiles

- Project: : Approached Road Foundation Rectification, Gone Nyin Dam Bridge, Maubin-phyapon Road
- Length: : Approached road, CH:42,850 m and CH:42,950 m, Embankment height, h_{max.} = 6.2 m
- Location: : Near Kyaiklat, Township, Ayeyarwady Region, Myanmar
- **Owner:** : Ministry of Construction
- **Project management**: : SMEC-OCG-PEG Joint Venture
- Contractor: : SHWE TAUNG, WIKA, TOKYU, STK Joint Venture
- Date: : 14.12.2020, [Monday]

Maubin–Phyapon Road Rehabilitation Project, July – December 2019

The proposed project aims to improve access to and within the Ayeyarwaddy Delta by rehabilitating 54.5 km of road between Maubin and Phyapon.

SMEC International Pty. Ltd., in joint venture with Oriental Consultants Global Co. Ltd., and Pyunghwa Engineering Consultants Ltd. for the Department of Highways, Ministry of Construction of Republic of Union of Myanmar, and the Asian Development Bank.

FHWA Distress Identification Manual identifies seven different types of road cracks:

- Fatigue cracking Repeated loading causes incremental damage. a group of interconnected road cracks form to break the road surface into multiple, irregular shaped pieces, usually less than 500mm in size.
- 2. Block cracking- Block cracking is a pattern that occurs as a series of roughly rectangular blocks, ranging from 0.3m to 3m in size.
- 3. Edge cracking- Edge cracking is long cracking in the outer 0.3 to 0.6m of a pavement that curves to the pavement edge.
- 4. Wheelpath Longitudinal cracking- parallel to the pavement's centerline, caused by fatigue.
- 5. Non-Wheelpath Longitudinal cracking- randomly located but still parallel to the centerline
- 6. Transverse cracking- thermally induced or due to underlying joints or cracks.
- 7. Reflection cracking- Reflection cracking describes cracking in asphalt overlay located in concrete pavements, or over shrinkage cracks in cement treated base layers.

Causes of Foundation Settlement

Foundation Soil Properties (E, v, c, ϕ) :

Soil Name	Consistency	
	Very soft	
Silty CLAY	Soft	
	Medium Stiff	
	Very soft	
Clayey SILI	Soft	
Silty SAND	Loose	

Old embankment and New filled soil for the road widening along the road way

- The roadway embankment between CH:42,850 m and CH:42,950 m is founded on the very soft clayey soil layers.
- New back fill soil: Old soil layer and Lime stabilization

Differential settlement along the roadway

New filled soil conditions for the road widening portion of the road way

- 1. Selection of Structure Types: Rigid or Flexible Pavement
- 2. Selection of foundation Types: a comparative study for selecting foundation shall be also performed based on considering the subsoil conditions of the site.

Analysis Methodology

Three stages of design analysis were considered for road way foundation design;

- 1. Check overall stability of embankment
- 2. Check the road way foundation excessive settlement
- 3. Check the Pavement Failure

Figure 3-1. Location of Critical Strains in a Full-Depth Asphalt Pavement

Shear Strain at the bottom of Pavement and bottom of Subgrade Layers

Method Selection for Foundation Rectification:

Combination of Stone Column/Jet grout and Reinforcement (CSE Method)

- 1. Stone Column/Jet Grout:
 - Column Diameter = 800 mm diameter
 - Column spacing = 1.5 m x 1.5 m 2.0 m x 2.0 m
 - Length of stone column = 10 m 12 m
 - F_c['] = 3 5 MPa., E = 14000 MPa
- 2. Use of Geosynthetics for Reinforcement: Geogrids and geotextiles

Use of Stone Column:

- 1. To control the overall settlement of road foundation due to the deep soft soil condition (recent soft soil deposit)
- 2. To control the overall slope stability of high embankment (approached road to bridge)
- 3. To act vertical drainage paths for settlement mitigation and to reduce the drainage path in a thick compressible soil layers.

Use of Geogrid in Road Pavement Construction

The geogrid construction in pavement construction have following features:

- Improvement of subgrade:
 - 1. The subgrade, which is the most important load bearing strata, is made solid and strong by the geogrids.
 - 2. The problem of soft subgrade can be solved by this method.

Use of Geogrids:

- 1. To control the lateral movement of the subgrade aggregate to separate between the subgrade and improved soil
- 2. To obtain the load distribution on *improved soil layer and stone column*
- 3. To increase in *bearing capacity*

Reinforcement of pavement base:

- To control the lateral movement of the subbase aggregate: The thickness of base if increased would increase the stiffness of base. But increasing thickness enormously is not economical.
- 2. The reinforcement to a given base layer would give *adequate stiffening to reduce the thickness and time of construction.*
- 3. This also helps in increasing the life of the pavement..

Properties of Geogrid:

- Mechanical, physical, durability
- Aperture size (36 x 34 mm)
- Strain rate, 13%
- Tensile Strength, 21 kN/m
- ASTM D-6637 for strength test and ASTM D-7737 for Junction strength test

Properties of Subbase:

 The size distribution subbase aggregate is selected based on the aperture of geogrid to obtain sufficient frictional resistance.

Load transfer platform select fill placement

Load transfer platform reinforcement placement

Shear strain at the bottom of Pavement and Bottom of Subgrade Layers

•

Road Widening and Soil Stabilization

Excavation of unsuitable materials Km 19 to 22 and Lime Stabilization

The main objectives of the soil stabilization is to increase the bearing capacity of the soil, its resistance to weathering process and soil permeability.

- 1. The long-term performance of any construction project depends on the soundness of the underlying soils.
- 2. Unstable soils can create significant problems for pavements or structures, Therefore *soil stabilization techniques* are necessary to ensure the good stability of soil so that it can successfully sustain the load of the superstructure especially *in case of soil which are highly active*.
- 3. A lot of time and millions of money will be happened depended on the method of cutting out and *replacing the unstable soil.*

Foundation Condition for Road Widening

- Differences between old and new foundation in structural thickness, Material properties and degree of compaction
- 2. Different stiffness
- 3. Foundation stability
- 4. Embankment Stability

Extruded Type of PP Biaxial Geogrid for *Road Base Reinforcement and Subgrade Stabilization*

Subbase Reinforcement

Subgrade Stabilization

Index for PPBG30-30	Test method	Units	MD values	TD values	Index fo
Polymer	-		PP	-	Polymer
Minimum carbon black	ASTM D4218	%	2	-	Minimum
Tensile strength @ 2% Strain	ASTM D6637	kN/m	10.5	10.5	Tensile stre
Tensile strength @ 5% Strain	ASTM D6637	kN/m	21	21	Tensile str
Ultimate Tensile Strength	ASTM D6637	kN/m	30	30	Ultimate Te
Strain @ Ultimate Strength	ASTM D6637	%	13	13	Strain @ U
Structural Integrity					Structural I
Junction Efficiency	GRI GG2	%	90	90	Junction E
Overall Flexural Rigidity	ASTM D1388	mg-cm	3,930,000		Overall Fle
Aperture Stability	COE Method	mm-N/deg	1432		Aperture S
Dimension					Dimension
Aperture Dimensions		mm	36	34	Aperture D
Minimum Rib Thickness	ASTM D1777	mm	2.1	1.8	Minimum F
Roll width		m	3.95		
Roll length		m	50		

Index for PPBG C 30-30	Test method	Units	MD values	TD values
Polymer	·	-	PP	
Minimum carbon black	ASTM D4218	%	2	-
Tensile strength @ 2% Strain	ASTM D6637	kN/m	10.5	10.5
Tensile strength @ 5% Strain	ASTM D6637	kN/m	21	21
Ultimate Tensile Strength	ASTM D6637	kN/m	30	30
Strain @ Ultimate Strength	ASTM D6637	%	13	13
Structural Integrity				
Junction Efficiency	GRI GG2	%	90	90
Overall Flexural Rigidity	ASTM D1388	mg-cm	3,930,000	
Aperture Stability	COE Method	mm-N/deg	1432	
Dimension				
Aperture Dimensions		mm	36	34
Minimum Rib Thickness	ASTM D1777	mm	2.1	1.8

Train Speed Control

Foundation Improvement for the differential settlement control:

The differential settlement is not more than
 10 mm over 10m chord, which is equivalent
 to angular distortion of 1:1000 (0.10%) along
 the rail line and uniform settlement in
 traverse line.

Design References:

- 1. Geotechnical Analysis and Design Guidelines, Technical Memorandum (TM 2.9.10), California High-Speed Rail Authority
- 2. Instruction of Myanmar Rail Way Department and JICA Project Management Team

Coffee break

Road Foundation Improvement by Soil Reinforcement

- Project: : Approached road foundation
- Length: : Approached road for both sides
- Location: : Thitsar Road, Nge Moe Yeik Bridge Construction Proj South Okkalapa-north Dagon, Yangon
- Client: : Ministry of Construction
- DATE: : 14/JULY/2017

Soil Profile

North Dagon side:

- Recent filled sand layer about 2 m (N=24)
- Medium stiff clay soil with organic soil about 2 m (N=7), and
- Medium stiff clay soil layer about 13 m thick (N=5).

South Okkalapa side:

- Silty clay soil about 2 m thick (N=6),
- Lateritic about 1 m (N=9),
- Sandy clay 3.5 m (N=9) and
- Silty clay with N=9 were found and followed the higher N values of clayey silt, sandy clay soil layers.

Remark

- 1. Deep excavation is required to achieve the design soil bearing capacity
- 2. Problem or costly excavation is required due to fluctuation of water level.

The main design requirements are discussed with Client:

- To control settlement of bridge approach road
- Differential settlement control from ground to Bridge Abutments

Application of Sand Column(Sand Piles)

- 1. To achieve the bearing capacity and control road surface settlement
- 2. To avoid the liquefaction effect

Application of Geotextile

- 1. To obtain the load distribution on foundation
- 2. To achieve the confinement the improved soil (reduction in lateral movement of the soil)

Steps of Construction:

- 1. Sand compacted pile
- 2. Reinforced compacted sand with geotextile
- 3. Reinforced RC based slab and reinforced wall
- 4. Filling the selected material and
- 5. Continue the reinforced road slab

The maximum traffic load with 75 tons. In analysis, 45 kPa of traffic load with the dynamic load factor of 1.4 is adopted.

250mm Thk: SLAB 400mm Thk: RCC WALL

50mm Thk: RC SLAB mm Thk: HARDCORE

-D52mm PVC PIPE @ 3.0x3.0m C/C

GEOSYNTHETIC, LAPPING 1.0m

SELECTED PIL

1300 300

South Okkalapa side

North Dagon side

Load Tests of SCP, q_{all} = Area of plate in Sq-m x (γ_f x H + traffic load)

Slab Connections with Bridge Abutments

Allowable settlement limits of approached road:

The required design length of an approach slab (L) can be estimated As (briaud et al., 1997, state dots):

 $L \ge 200 (s_{f} - s_{a})$

where s_f = the estimated total settlement at the end of the approach slab, and

 s_a = the estimated settlement of the bridge abutment. Here, s_a is adopted as zero.

Allowable settlement limits for this project:

- At North Dagon side, L shall be 12.0m for corresponding to acceptable differential settlement 60 mm (2.4 in).
- At South Okkalapa side, L shall be 6.0m for corresponding to acceptable differential settlement 30 mm (1.2 in).

REBAR INSTALLATION DETAIL OF APPROACH SLAB

Geotextile Encased Column (GEC) Foundation System

General idea of embankment on soft soil set on Geosynthetic Encased Columns (GECs)

Displacement method of construction

geotextile encasement

Installation of geotextile encasement

Completed Geosynthetic Encased Columns

Geotextiles for Separation action, Filtration, Reinforcement, Barrier

Solution for Problematic Soils (Collapsible soil, Expansive soil, Dispersive soil, Lateritic soil etc.)

- 1. Where the thickness is thin layer, removal of **problematic soils** is a good option.
- 2. Chemical Soil Stabilization- Cement, lime, or any other chemical additives can be used for soil treatment.
- 3. Where the problematic soil layer is very thick and it will not be suitable for conventional deep foundation, mechanical <u>soil improvement</u> should be used.

NOTE: Sandy dispersive soil and expansive clay soils are commonly found in agricultural areas.

Combination of Stone Column and Separation action

- 1. Stone Column:
 - Stone Column Diameter = 1000 mm diameter
 - Stone column spacing = 1.2 m x 1.2 m and 1.5m x 1.5m
 - Length of stone column = 8 m
- 2. Use of Geosynthetics for Reinforcement: Geogrids and geotextiles

Applications of Geogrids in Building Foundation Soil

Stone Column Installation

FIG: VIBRO-REPLACEMENT METHOD PROCESS

Sand cone test

Geotextile for Erosion Protection

Project:: Jetty ConstructionLocation:: THAKETA, YANGONClient:: Total E & P MyanmarDATE:: JULY, 2013

Design Consideration

Designs of support system which includes as:

- 1. Sheet pile and capping beam
- 2. Ground anchor pile and anchor beam
- 3. Reinforced pile with inclined strut for sheet pile support to resist the loading
- 4. Embankment erosion protection

Site Information

8.1 The tidal stream observations were carried out by floating ball on 3rd December 2013during spring tides. The current is 3.7 knots toward 59 degree at high tide and 3.6 knots toward 248 degree at low tide.

Site Information

- Soil investigation
- Erosible soil condition

Erosion due to tidal wave

Site Information

- Geology of Site
- Soil Profiles
- Water Level

Design of embankment erosion protection:

- 1. Slope stability
- 2. Geotextile application with required functions for mechanical and hydraulic filtration for slope stability

Function of geotextile:

- 1. Filtration
- 2. Resisting the punching force

Specification of geotextile:

- 1. Clogging criteria for selection of type of geotextile in cohesive soil was designed.
- 2. For clay layer, sand layer thickness of 200 mm is used for primary filter.
- To avoid geotextile clog for long term, FHWA recommends the minimum porosity of geotextile shall be greater than 60%. Polyfelt geotextile has > 80%.
- 4. Polyfelt was selected having the lowest grade of polyfelt TS 600 for the required punching resistance.

Susceptibility of soil particles to erosion, FHWA (1988)

Permeability of sand layer	Permeability of geotextile
$1 x 10^{-5} $ cm/s	$1 \times 10^{-3} \text{ cm/s}$

- 1. Design method of slope stability (Hoek, E, 1973) is adopted. For the safety factor of 2, the recommended slope angle is 23°.
- 2. The maximum acceptable weight of the stone block can be estimated as the function of slope and wave height, h.

Water

3. Wave height of water, h = 1.0m.

Water

Clay layer

Project: : Nawin-Kyauk Ooe lay Road, Pyay

- **Owner:** : Ministry of Construction
- **Date:** : 12.6.2019

Road Foundation in Collapsible Soil

Collapsible Soil:

- Young or Recent altered deposit
- Open structure
- Consist of SILT and fine SAND
- High void ratio
- High porosity (> 50%)
- High sensitivity
- Low dry density (11 14 kN/m³)
- Low interparticle bond strength of soil

The collapsible soil become great settlement when the soil gets wet.

Collapsible soil

- 1. The road is located near to the rivers or the pools where the moisture limit going to be high and the saturation will exceeds the limit of collapse.
- 2. Problematic for structures due to its large settlement potential.

CP (collapse potential) values				
Percent volume change Severity of problem				
0 - 1	No problem			
1 - 5	Moderate trouble			
5 - 10	Trouble			
10 - 20	Severe trouble			
> 20	Very severe trouble			

Site observation and soil investigation:

- 1. Site observation (in-situ testing)
- 2. 16 numbers of bore hole

50

Solution for Problematic Soil

- 1. Removal of collapsible soil is a good option when the thickness is low.
- 2. Chemical Stabilization- Cement, lime, or any other chemical additives can be used for collapsible soil treatment.
- 3. Densify and reach equilibrium conditions as water moves through the soil. If the soil layer is thick, it should be treated to decrease settlement potential (compaction is one of the methods)
- 4. Select Suitable Foundation (Combination of deep foundation and geotextiles)
 - Sand or crushed stone column is a suitable material for collapsible soil replacement.
 - A deep foundation can bypass collapsible soil and transfer superstructure load to a hard soil layer.
 - Mat or raft foundation can withstand large expected settlement of the collapsible soil.

FHWA recommends the minimum porosity of geotextile shall be greater than 60%. Polyfelt geotextile has > 80%. Therefore, polyfelt shall be selected having the lowest grade of polyfelt TS 600.

- Permeability of geotextile = 1x10⁻³ cm/s
- Tension capacity = 20 kN/m

IV. Specification of Geogrid

Performance/ Specification	Specification	Remark		
Tension canacity kN/m	200	Longitudinal		
rension capacity, kiv/m	200	Crosswise		
Break elongation ratio, %	5			
Grid (mm) 32 x 32 (or) 32 x 32				
 Corrosion resistance, no long-term creep, long life span Resistant to fatigue cracking, high-temperature track and low temperature shrinkage cracking. 				

Maximum traffic load with 35 tons (ref. typical design cross section of road).

٠

Pyay

3. Conclusion

- 1. Building Climate-Resilient Infrastructure using Geosynthetics become green infrastructure to build Resilience. Incorporating geosynthetics into infrastructure can improve the ability of communities to withstand and recover from extreme weather events.
- 2. When used in load support, slope stabilization, waterway protection, and retaining wall applications, geosynthetics are a many advantages against the long-term effects of climate change.
- 3. Sustainability emphasizes the *importance of increasing the resource efficiency of infrastructure*. The usage of geosynthetic materials in civil and environmental engineering can significantly influence sustainability at the planning and design stages of infrastructure construction projects.

Finally specking:

- 1. Reducing the environmental impacts of construction materials
- 2. Improvement of the existing resources for efficient use of resources in construction

