

	Title	Speaker
Part -1	Seminar on Study of Technology of Pre-tensioning Spun Pile in Myanmar	May Pwint Phyu M.E (Civil) R.E-01934 Associate Asian Engineer (AAE5052)
Part -2	Seminar on Study of Technology of Post-tensioning Segmental Girder in Myanmar	Zaw Lwin Moe B.E (Civil) R.S.E-0459

Seminar on Study of Technology of Pre-tensioning Spun Pile in Myanmar

Present by May Pwint Phyu M.E (Civil) Associate Member of Asian Engineer

Content

- ➢ I. Introduction to Pre-stressed Precast Concrete Spun Pile Industry
- ➢ II. Advantages of Spun Pile
- III. Structure of Pre-cast Concrete Spun Pile
- > IV. Specification
- ➢ V. Structural Capacity of Spun Pile
- VI. Calculation formula for Capacity of Spun Pile
- VII. Connection Detail
- > VIII. Workflow in Manufacturing
- ➢ IX. Workflow in Installation

I. Introduction to Pre-stressed Precast Concrete Spun Pile Industry

In Japan, development of PC Spun Pile began in 1962, with the first large-scale use in bridge pier foundations for the Tokyo Metropolitan Expressway.

Over the 54 years since, PC Spun Pile has been used for all types of structures such as buildings and highway structures, and it is a widely recognized preferred foundation material along with cast-in-place pile and steel pipe pile.

In Myanmar, spun pile was started production on 2016 by I&H Engineering Co.ltd. Mainly use for foundation of buildings, bridges and jetty projects.

In this Seminar, a presentation will be made of the structure, advantages, and production method of PC Spun Pile.

II. Advantages of <u>Pre-cast Concrete Spun Pile</u>

Centrifugal forming results in uniform and compact concrete

Number of joints can be small

Uniformity of property

Compact concrete increase corrosion resistance

Japan Quality System

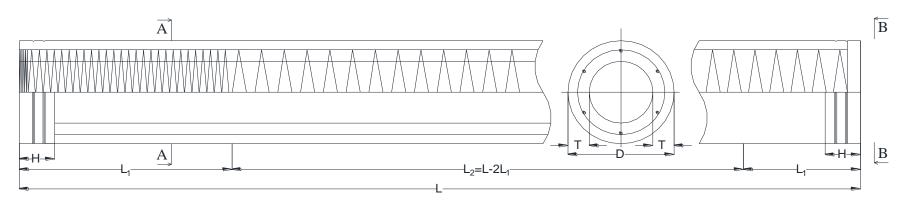
Reduction of Construction Site Risk

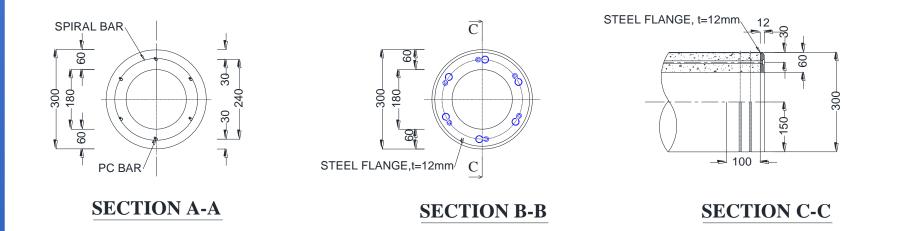
Pre-Qualification on Product Before Installation

Providing of Product On Time in Construction Schedule,

Against for Rainy Season

Reduction of Quality Control Work on Site


- Save Environmental Condition



III. Structure of Pre-cast Concrete Spun Pile

(**Ref: I&H**)

IV. Specification

JIS A5335 – Pretensioned Spun Concrete Piles

Diameter:300mm, 350mm,400mm,450mm, 500mm, 600mm, 700mm, 800mm, 1000mm, 1200mmType:Type A , Type B , Type C (based on cracking moment by bending)Concrete Strength :Grade Cylinder 50

JIS A5337 – Pretensioned Spun High Strength Concrete Piles

Diameter	:	300mm, 350mm, 400mm, 450mm, 500mm, 600mm, 700mm, 800mm, 1000mm
Туре	:	Type A, Type B, Type C (based on cracking moment by bending)
Concrete Streng	th :	Grade Cylinder 80

Foundation for High Raise Building , Warehouse , Factory , Bridge , Jetty , Oil Tank , Retaining wall and etc., JIS Japanese Standard , High Technology , to improve the infrastructure sector .

V. Structural Capacity of Pre-cast Concrete Spun Pile

Cylinder 50MPa (Ref: I&H)

Dimension				PC-bar Dia.		Effective		Break Bending	Allowable Bearing Capacity		Allowable Shear Capacity		Allowable Tensõe Capacity						
1.642	Dia. (mm)	Thick- ness (mm)	Length (m)	Weight (ton/m)	Class	(mm)			Moment (kN.m)	Moment (kM.m)	Per- manent (kN)	Tem- porary (kN)	Per- manent (kN)	Tem- porary (kN)	Per- manent (kN)	Tem- porary (kN)			
					А	7.1	6	4.4	24.6	40.2	706	1,059	51	64	251	297			
1	300	60	6~13	0.118	В	9.0	8	8.7	35.7	72.0	658	987	68	85	511	607			
					с	10.0	8	10.3	40.1	82.8	640	960	74	92	619	740			
					А	7.1	7	4.0	36.4	56.6	914	1,371	62	79	298	358			
2	350	65	6~15	0.151	В	10.0	7	7.4	49.8	96.6	865	1,298	81	102	573	695			
								с	10.7	9	10.3	61.9	127.6	824	1,236	94	117	797	952
			6~15		А	7.1	10	4.3	56.2	90.9	1,197	1,795	82	105	416	495			
3	400	75		0.199	В	10.0	10	8.0	78.3	154.1	1,127	1,691	107	135	805	966			
					С	10.7	11	9.7	88.9	181.9	1,095	1,643	117	146	995	1,198			
				0.242	A	9.0	7	4.0	75.8	117.2	1,460	2,190	99	127	476	571			
4	450	80	6~15		В	10.0	14	8.4	113.0	236.6	1,366	2,049	137	171	1,024	1,221			
					с	10.7	14	10.1	127.3	260.8	1,321	1,981	149	1 <mark>8</mark> 5	1,251	1,499			
					А	9.0	9	4.1	105.7	166.3	1,818	2,727	125	159	606	725			
5	500	90	<mark>6 ~ 1</mark> 5	0.301	В	9.0	18	7.8	147.9	288.1	1,712	2,568	165	207	1,193	1,436			
					с	10.7	18	10.4	179.2	367.5	1,637	2,456	188	234	1,600	1,910			
					А	9.0	12	4.1	176.2	270.5	2,462	3,693	168	215	821	982			
6	600	100	6~15	0.408	В	10.0	24	8.4	260.3	548.3	2,309	3,463	230	288	1,732	2,065			
					С	10.7	24	10.2	295.4	604.5	2,227	3,341	251	313	2,132	2,552			

Copyright © 2016 I & H Engineering Co., Ltd. All Rights Reserved.

V. Structural Capacity of Pre-cast Concrete Spun Pile

Cube 80MPa (Ref: I&H)

	Dimension				PC-ber Dia. No.4				Break	Allowable bearing Capacity		Allowable Shear Capabity		Allowable Tendle Capacity												
	Dia. (mm)	Thick- ness (mm)	Length (m)	Weight (ton/m)	Class	(mm)					Per- manent (kN)	Tem- porary (kN)	Per- manent (kN)	Tem- porary (kN)	Per- manent (kN)	Tem- porary (kN)										
					А	7.1	6	4.4	24.6	40.2	938	1,407	51	66	251	297										
1	300	60	6~13	0.118	В	9.0	8	8.7	35.7	72.0	897	1,346	69	87	511	607										
					с	10.0	8	10.3	40.1	82.8	882	1,323	75	93	619	740										
					А	7.1	7	4.0	36.4	56.6	1,212	1,818	63	81	298	358										
2	350	65	6~15	0.151	В	10.0	7	7.4	49.8	96.6	1,170	1,755	82	103	573	695										
					с	10.7	9	10.3	61.9	127.6	1,135	1,702	96	119	797	952										
				6~15 0.199	А	7.1	10	4.3	56.2	90.9	1,590	2,385	83	106	416	495										
3	400	75	6 ~ 15		0.199	0.199	0.199	0.199	0.199	0.199	0.199	0.199	0.199	0.199	В	10.0	10	8.0	78.3	154.1	1,530	2,294	109	137	805	966
					с	10.7	11	9.7	88.9	181.9	1,503	2,254	119	149	995	1,198										
					Α	9.0	7	4.0	75.8	117.2	1,936	2,905	101	129	476	571										
4	450	80	6 ~ 15	0.242	В	10.0	14	8.4	113.0	236.6	1,858	2,787	139	174	1,024	1,221										
					С	10.7	14	10.1	127.3	260.8	1,817	2,726	151	188	1,251	1,499										
								А	9.0	9	4.1	105.7	166.3	2,412	3,618	127	162	606	725							
5	5 500 90	90	0 6~15	0.301	В	9.0	18	7.8	147.9	288.1	2,320	3,480	167	210	1,193	1,436										
				С	10.7	18	10.4	179.2	367.5	2,257	3,386	191	238	1,600	1,910											
					А	9.0	12	4.1	176.2	270.5	3,267	4,900	171	219	821	982										

V. Structural Capacity of Pre-cast Concrete Spun Pile

Cylinder 80MPa (Ref: I&H)

No.						PC-bar Dia.		Effective	Effective Pre-stress (N/mm2) Moment (kN.m)	Break Bending Moment (kN.m)			Allowable Shear Capacity		Allowable Tensile Capacity											
(Acon)	Dia. (mm)	Thick- ness (mm)	Length (m)	Weight (ton/m)	Class						Per- manent (kN)	Tem- porary (kN)	Per- manent (kN)	Tem- porary (kN)	Per- manent (kN)	Tem- porary (kN)										
					А	7.1	6	4.2	27.7	42.0	1,173	1,760	60	77	241	288										
1	300	60	6~13	0.118	В	10.0	6	8.1	37.8	72.3	1,141	1,711	79	99	481	576										
					с	10.0	8	10.3	43.8	89.9	1,124	1,686	87	110	619	740										
						А	7.1	7	4.0	41.8	58.7	1,510	2,265	75	97	298	358									
2	350	65	6~15	0.151	В	10.0	7	7.4	55.4	102.5	1,475	2,212	97	122	573	695										
						с	10.0	9	9.2	62.9	124.6	1,457	2,185	106	134	722	877									
					А	7.1	10	4.3	64.4	94.7	1,983	2,974	99	128	416	495										
3	400	75	6~15	6~15 0.199	0.199	В	10.0	10	8.0	86.7	164.0	1,932	2,898	128	162	805	966									
					с	10.0	11	8.7	91.0	176.7	1,923	2,884	133	167	906	1,108										
					А	9.0	7	4.0	87.2	121.5	2,413	3,619	120	155	<mark>476</mark>	571										
4	450	80	6~15	0.242	В	10.0	14	8.4	124.7	253.0	2,351	3,526	163	205	1,024	1,221										
					с	10.0	14	9.0	129.4	253.8	2,331	3,496	168	211	1,133	1,379										
				0.301											А	9.0	9	4.1	121.4	172.6	3,006	4,509	151	195	606	725
5	5 500 90	90	6~15		В	9.0	18	7.8	164.0	306.0	2,929	4,393	197	249	1,193	1,436										
				с	10.0	18	9.3	182.0	358.9	2,898	4,348	212	267	1,451	1,759											
					А	9.0	12	4.1	202.4	279.8	4,071	6,107	203	263	821	982										

VI. Structural Calculation Formula for Spun Pile Product

- $\blacktriangleright Mcr = (Ie/ye) (\sigma tu + \sigma ce + \sigma N)$
- > Pap = (1/3) (σ cu- σ ce) Ac
- > Pat = (1/2) (σ cu- σ ce) Ac

Where:

- □ Mcr : Cracking moment
- □ Mu : Ultimate moment

Class A: Mu=1.5Mcr

Class B: Mu=1.8Mcr

Class C: Mu=2.0Mcr

- Pap : Permanent allowable bearing capacity of pile
- Pat : Temporary allowable bearing capacity of pile
- Ie : Moment of inertia
- ye : Length from centroid to tensile edge of concrete (D/2)
- Σcu : Compressive strength of concrete ($\sigma cu = 50N/mm2$)
- Σtu : Flexural tensile strength of concrete ($\sigma tu = 6N/mm2$)
- Σce : Effective prestress
- σN : Axial compressive stress working on a pile ($\sigma N = 0$)
- Ac : Section area of pile

VI. Structural Calculation Formula for Spun Pile Product

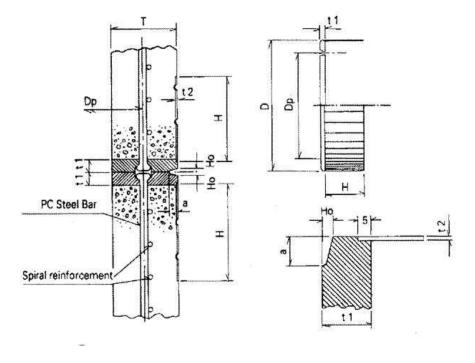
Stress induced in concrete by bending moment and axial force

$$\sigma_{\rm c} = \frac{\rm N}{\rm A} + \sigma_{\rm ce} \pm \frac{\rm M}{\rm Z} \le \sigma_{\rm ca}$$

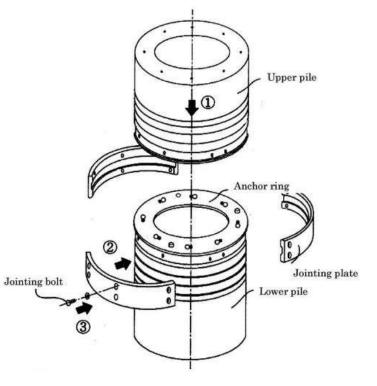
Where N: Axial force acting on pileσc : Stress induced in concrete pile bodyM: Bending moment acting on pile

 σce : Effective prestress in pile body

A: Section area of pile

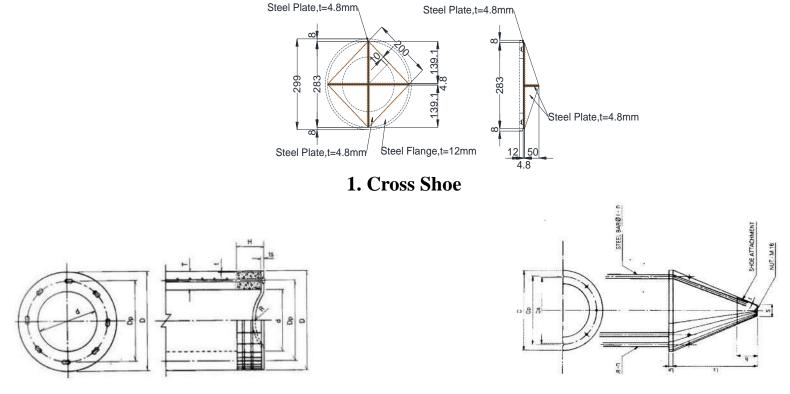

 σca : Allowable stress of concrete

- Z: Section modulus of pile
- 1) Allowable Capacity of pile (to be the minimum of:) allowable structural capacity allowable soil capacity
- Bending moment and shear force from lateral load on pile to not exceed the pile's allowable bending moment and allowable shear force (include unit stress from vertical force). Unit stress induced in concrete to not exceed allowable unit stress
- Displacement of pile head to not exceed the allowable displacement of the structure
 Pile head displacement is determined by lateral force on pile, stiffness of pile body, and strength of the soil.



VII. Connection Detail VII.1 Joint of Spun Pile Product

1. Welding Joint Between Two Piles (Standard)

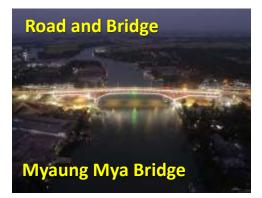


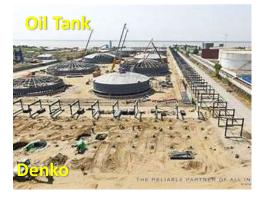
2. Mechanical Joint Between Two Piles (Example)

VII. Connection Detail VII.2 Toe/Shoe of Spun Pile Product

2. Mamira Shoe (Concave-section shoe)

3. Pencil Shoe





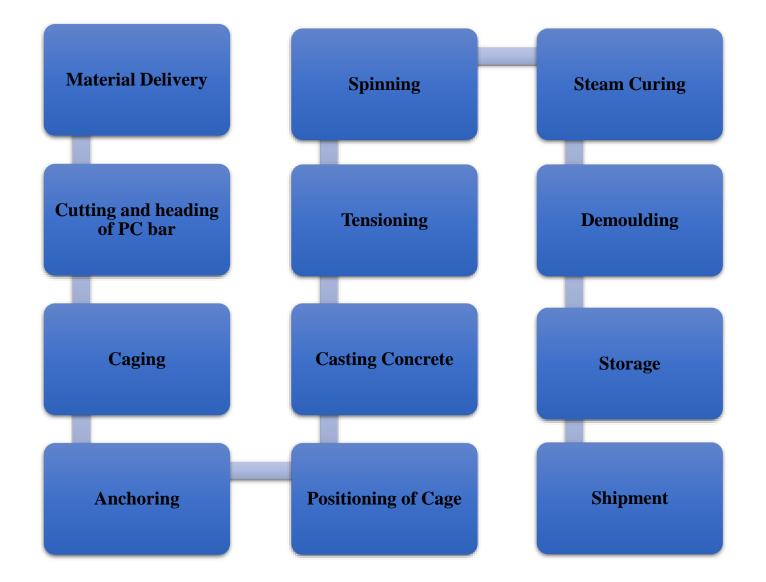
Reference Spun Pile Projects of I&H

I&H II.1. Pre-cast Concrete Spun Pile

II.1.4 Price Comparison between Spun Pile and other piles

Project name		Bor	red Pile D	Design	Spun Pile Counter Design						
	Pile Size	Length (M)	No.pile pts	Total M	Price (USD)	Pile Size	Length (M)	No .pile pts	Total M	Price (USD)	
	Ø 800mm	30	6	180			24	132	3,168	<mark>175,000</mark>	
City Loft Project Phase 1	Ø 800mm	35	11	385		Ø600mm					
Star City, Thanlyin	Ø 1200mm	33	20	660	<mark>559,000</mark>						
	Ø 1200mm	36	24	864							
Construction Period			3 Month 2 points / c			1.5 Month 5 Points / day					

II.1. Pre-cast Concrete Spun Pile


II.1.4 Price Comparison between Spun Pile and other piles

		R	C Pile Des	sign		Spun Pile Counter Design					
Project name	Pile Size	Length (M)	No.pile pts	Total M	Price (USD)	Pile Size	Length (M)	No.pile pts	Total M	Price (USD)	
Toyo Ink Factory PJ (Thilawa SEZ)	300mm x 300mm	12	420	5,040	<mark>90,720</mark>	Ø 300mm	18	248	4,464	71,424	
FLP WareHouse (Thar kay Ta)	250mm x 250mm	24	971	23,304	<mark>256,344</mark>	Ø 300mm	30	345	10,350	<mark>165,600</mark>	

High Quality can minimize quantities and save cost

I&H <u>VIII Workflow in Manufacturing Process of Spun Pile</u>

Cutting of PC Bar

Heading of PC Bar

Caging

Anchoring

Copyright © 2016 I & H Engineering Co., Ltd. All Rights Reserved.

I&H

Positioning of Cage in Bottom Formwork

Casting Concrete

Upper Forming

Tensioning

Spinning

Copy Right @ IHE QC

Steam Curing

Demoulding

Copyright © 2016 I & H Engineering Co., Ltd. All Rights Reserved.

IX. Workflow in Installation Process of Spun Pile

Delivery to Site

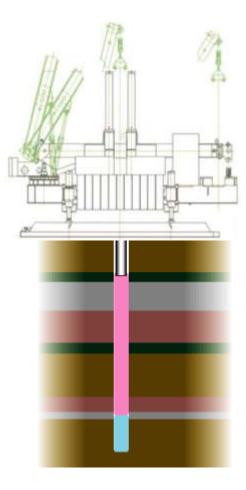
Material Receiving

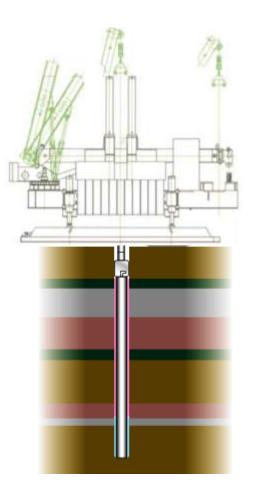
Jointing by Welding

Setting-up of Pile Machine

Installation of Jack-in-pile

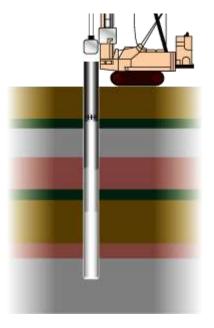
Testing Piling

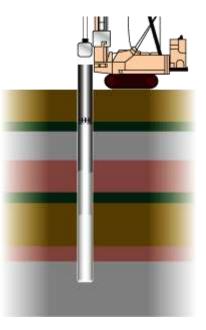




I&H <u>III.3. Construction Method for Spun Pile (currently)</u>

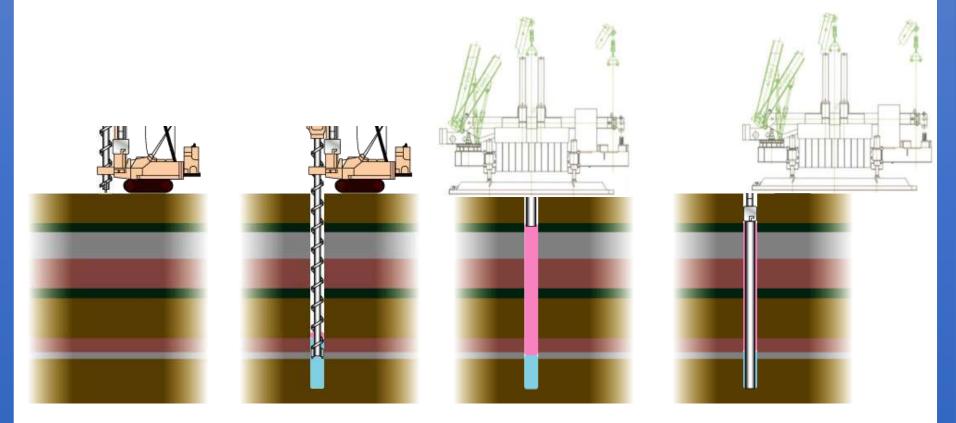
Pile Installation using Jack-in-Pile Method



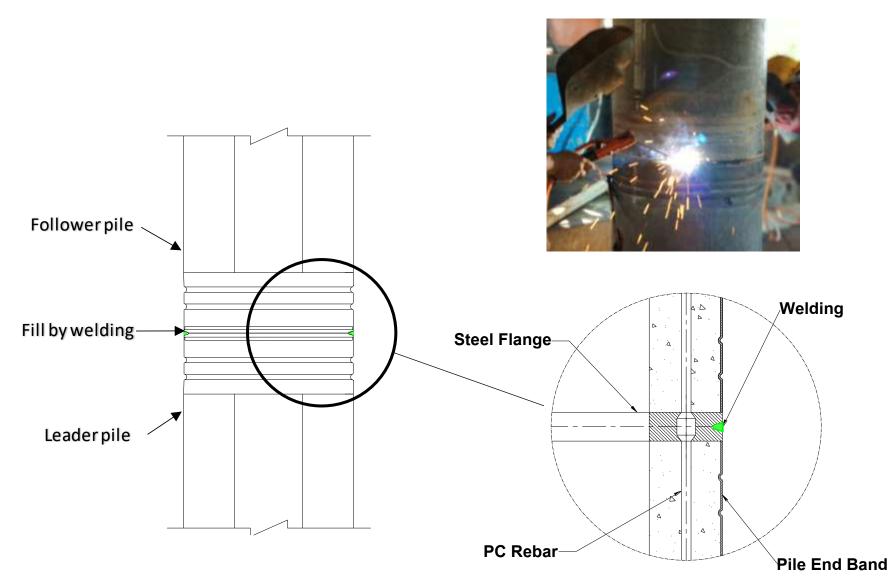


III.3. Construction Method for Spun Pile (currently)

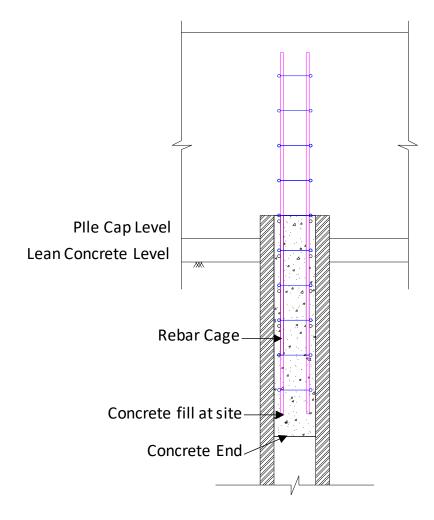
Pile Installation using Drop Hammering Method



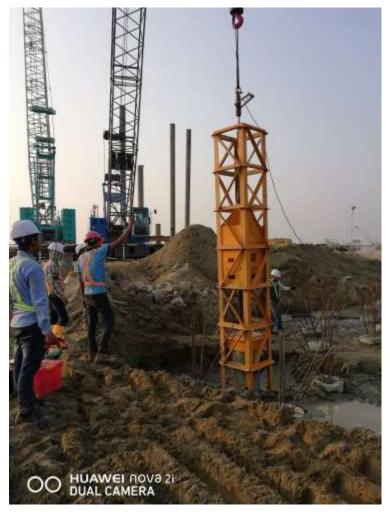
III.3. Construction Method for Spun Pile (currently)

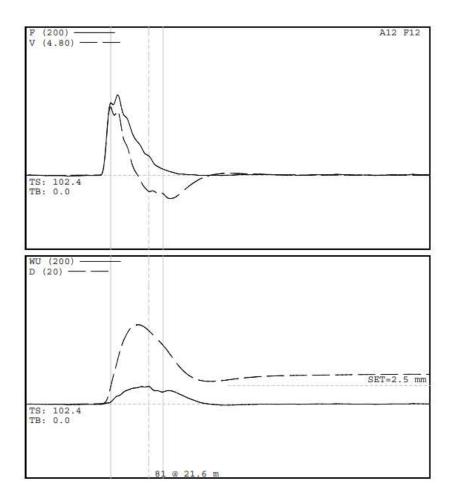


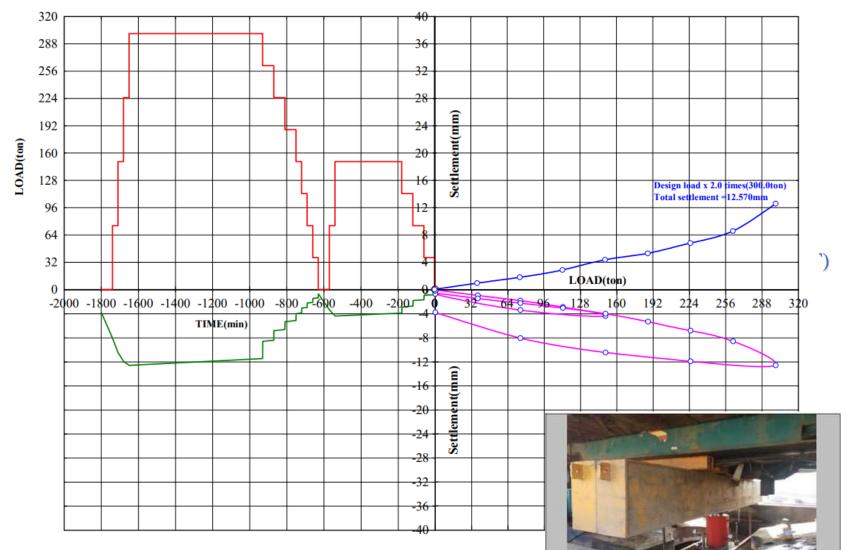
Pile Installation using Pre-Boring with Jack-in-Pile Method

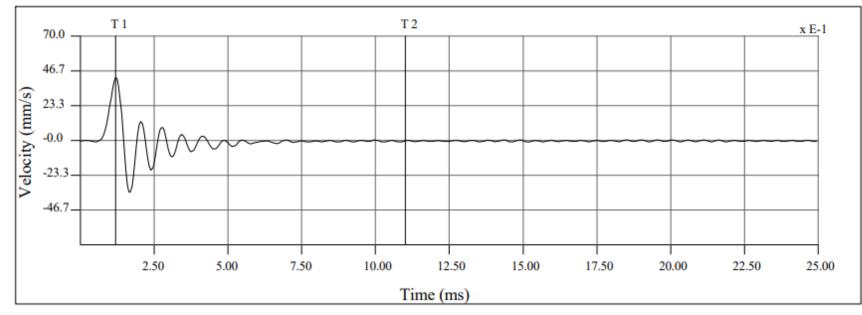

I&H III.4. Spun Pile Jointing Method

I&H III.5. Spun Pile Head Treatment






I&H <u>III.6. Testing of Pile , (Dynamic Load Test)</u>


I&H III.6. Testing of Pile , (Static Load Test)

I&H III.6. Testing of Pile , (Pile Integrity Test)

Please feel freely for any Discussion !

Thank you very much for your attention.

Seminar on Study of Technology of Post-tensioning Segmental Girder in Myanmar

Present by Zaw Lwin Moe B.E (Civil)

I. Introduction to Pre-cast Segmental Bridge Girder

- I.1. Advantages of Precast Post Tension Segmental Girder
- ➢ I.2. Reference Projects
- > <u>II. Assembly of Girder, Execution on Site</u>
- > <u>III. Production of Girder</u>

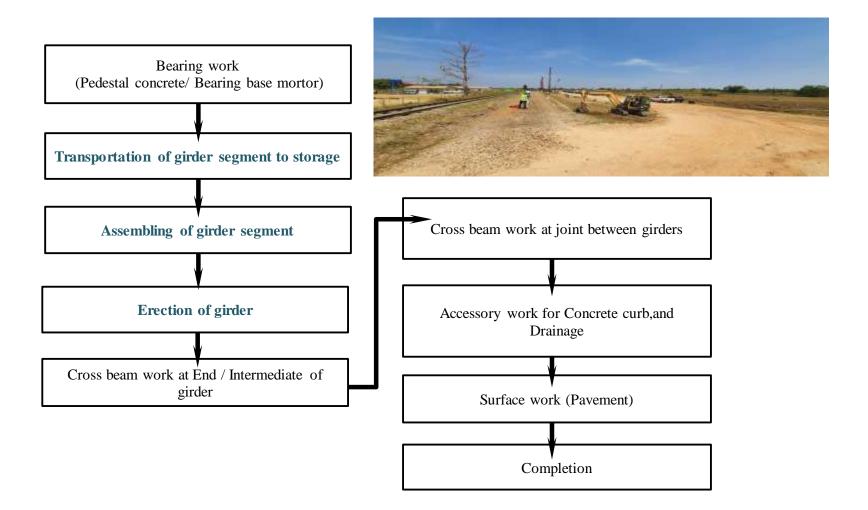
I. Introduction to Pre-cast and Post-tensioned Segmental Bridge Girder

I.1 Advantages of Precast Post Tension Segmental Girder

- High Quality can be maintained by manufacturing in the factory
- No concrete work in the site
- Minimize the work period and men power in the project site
- > No interruption due to the rain
- Easily Transport by segmental girder to the erection points

I.2 Reference Project of Post tensioned Segmental Girder

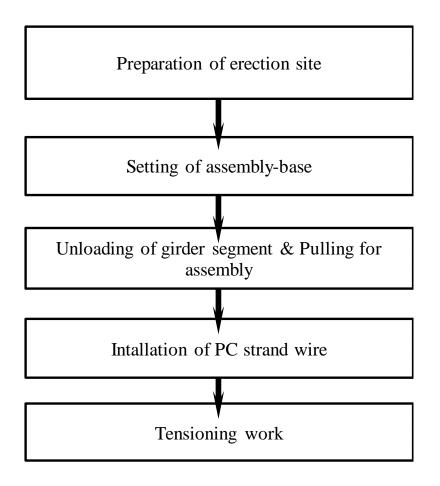
New Myaing Mya Bridge Project under Ministry of Construction (Completed in 2019)


Post Tensioned Segmental I Girder Total Length - 54 Client - M

540 meter (Approach Bridge) Ministry of Construction

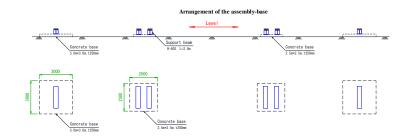
Flow Chart for Execution on Site

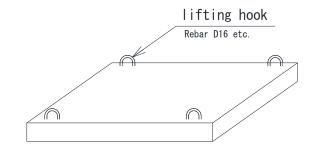
Transportation of girder segment



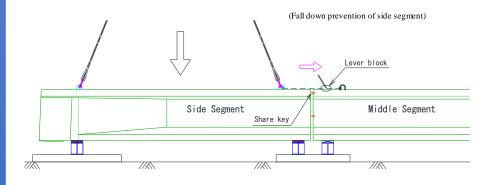
Assembly of girder segment

Preparation of erection site





Setting of assembly-base



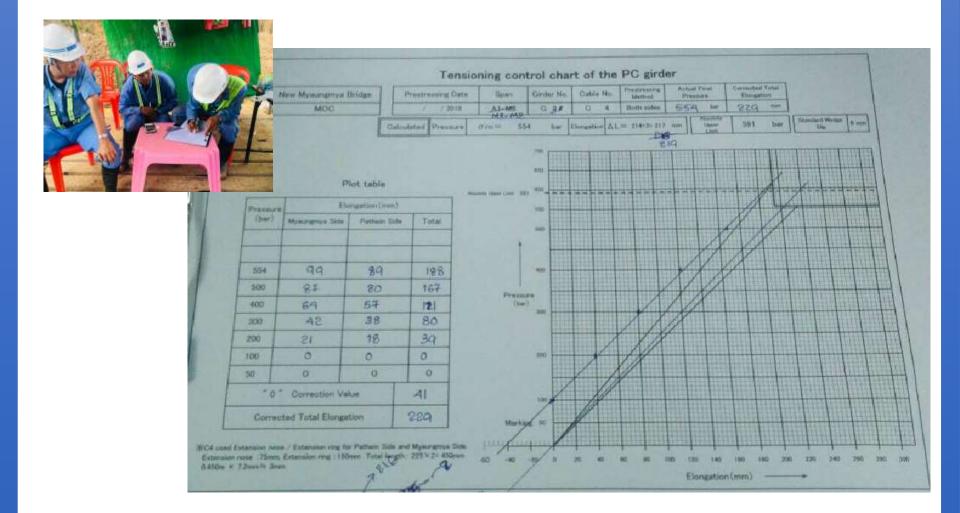
3) Unloading of girder segment & Pulling for assembly

I&H

II. Assembly of Girder, Execution on Site

4) Installation of PC strand wire

5) Tensioning work

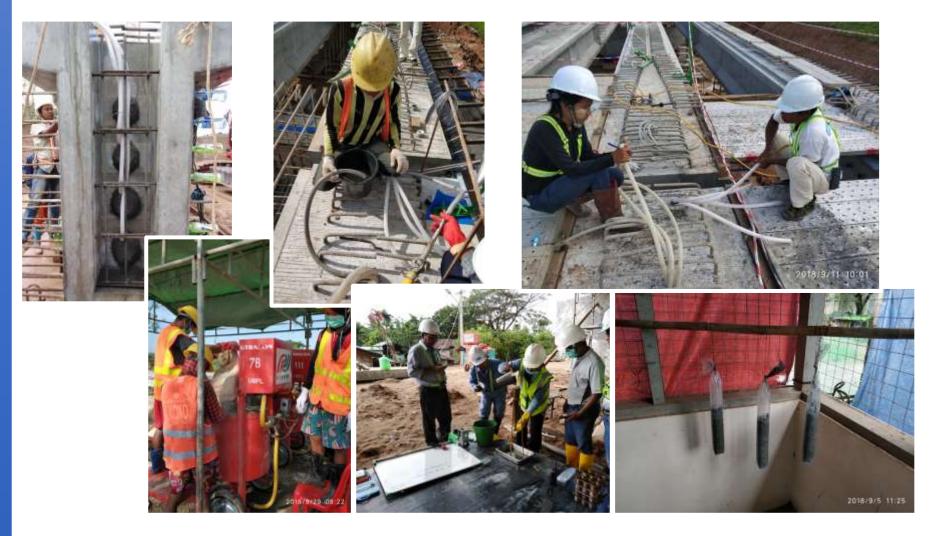


5) Tensioning work

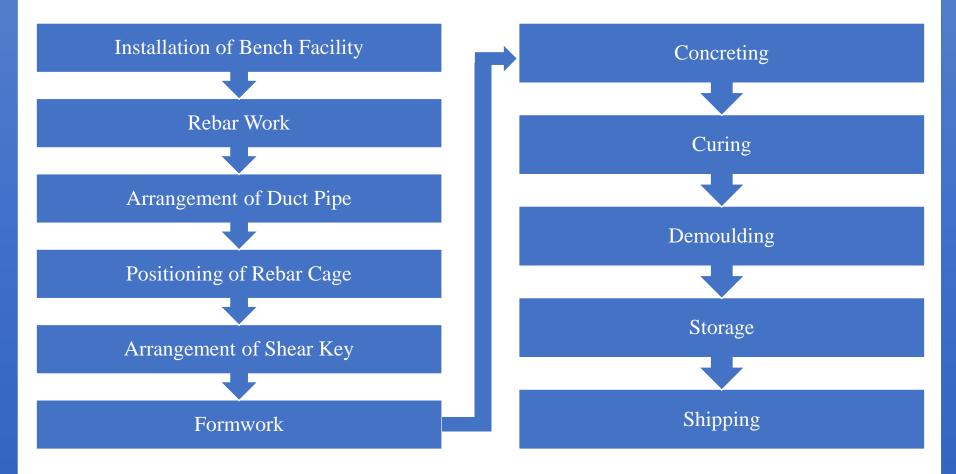
(1) Erection of girder

IHI

Realize your dreams

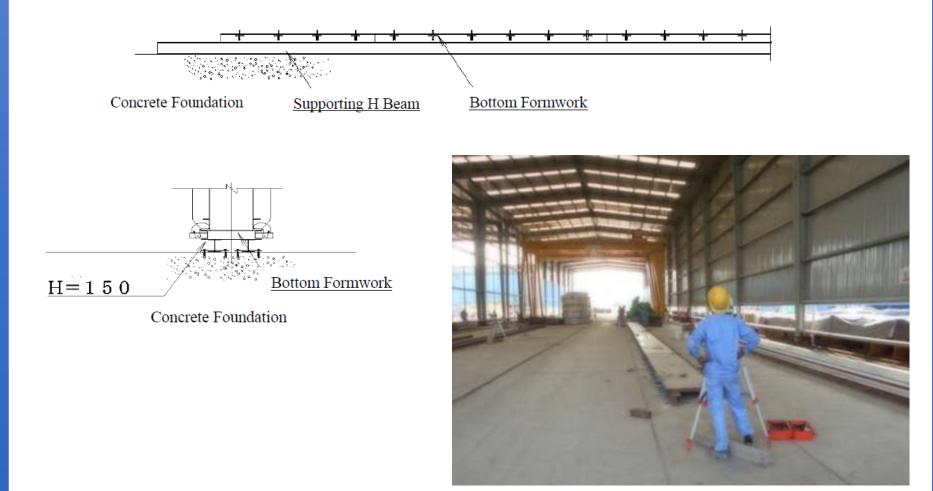


(2) Grouting work for PC strand



III. Girder Production Procedure

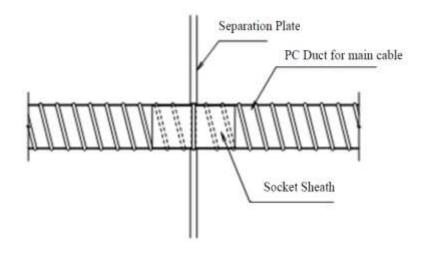
Flow Chart in Production



III. Girder Production Procedure

Installation of Bench Facility

III. Girder Production Procedure Rebar Work


Bending

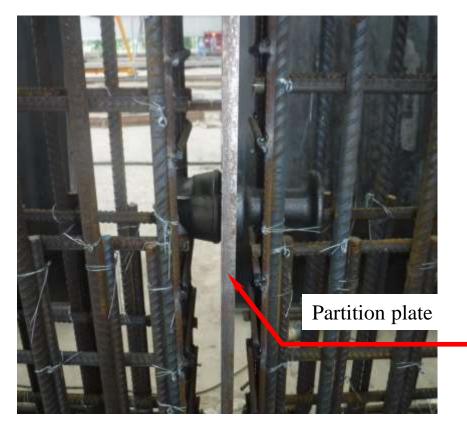
III. Girder Production Procedure Arrangement of Duct Pipe

I&H

Partation Plate & PC Duct Connection

III. Girder Production Procedure

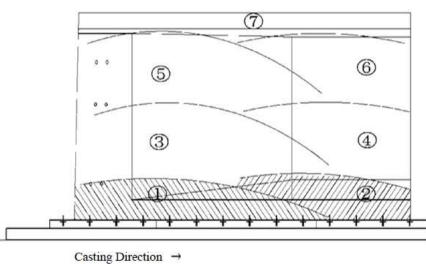
Positioning of Rebar Cage


III. Girder Production Procedure Arrangement of Shear Key

I&H

Shear Key

III. Girder Production Procedure Formwork



III.2. Girder Production Procedure

Concreting

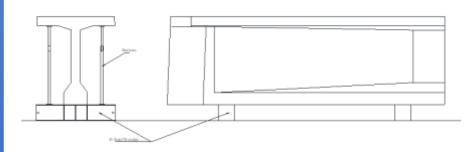
Side View

Casting Sequence

III. Girder Production Procedure

Curing

<u>III. Girder Production Procedure</u> Demoulding



I&H

III. Girder Production Procedure

Storage

III. Girder Production Procedure

Shipping

IV. Quality Control

- Aggregate Sieve Analysis and Sand Moisture Test
- Test of Concrete Compressive Strength
- Checking of Concrete Slump and Temperature
- Inspection of Duct Pipe Location & Segment Length

1) Aggregate Sieve Analysis and Sand Moisture Test

Testing Standard: Sieve Analysis (ASTM C33) and Sand Moisture (JIS A1111)

2) Test of Concrete Compressive Strength

Testing Standard: Compressive Strength of Cylinder Concrete (ASTM C39)

3) Checking of Concrete Slump and Temperature

3) Inspection of Duct Pipe Location & Segment Length

Please feel freely for any Discussion !

Thank you very much for your attention.